Environmental Product Declaration Southwire SIMpull® Cable-In-Conduit

Southwire Company, LLC is one of North America's largest wire and cable producers. As a family business, Southwire proudly continues building on our commitment to environmental stewardship and corporate sustainability by prioritizing stakeholder expectations, and supporting the wellbeing of our communities and the environment in which we live. To help us meet this commitment, we organize our sustainability strategy around five core tenets: Growing Green, Living Well, Giving Back, Doing Right, and Building Worth.

Our five core tenets allow us to deepen our vision and commitments by strengthening and aligning our programs, goals, and governance. Driven by the highest standard of excellence, we appreciate the need for continued improvement and are proud that our results continue to build a stronger Southwire. The use of environmental product declarations is growing rapidly in the wire and cable market. Southwire is developing its product stewardship program to evaluate and reduce the impacts of our products and processes throughout the organization.

Southwire SIMpull® Cable-In-Conduit -Schedule 40 Empty Duct Southwire SIMpull® Cable-In-Conduit -Schedule 40 with Pull Tape Southwire SIMpull® Cable-In-Conduit -Schedule 80 Empty Duct Southwire SIMpull® Cable-In-Conduit -Schedule 80 with Pull Tape Southwire SIMpull® Cable-In-Conduit Empty Duct SDR 11 Southwire SIMpull® Cable-In-Conduit SDR 11 with Pull Tape Southwire SIMpull® Cable-In-Conduit Empty Duct SDR 13.5 Southwire SIMpull® Cable-In-Conduit Empty Duct with Pull Tape SDR 13.5

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025, EN 15804, and ISO 21930-2017. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

may not be comparable.						
EPD PROGRAM AND PROGRAM OPERATOR NAME, ADDRESS, LOGO, AND WEBSITE	UL ENVIRONMENT 333 Pfingsten Rd, Northbrook,	IL 60062 WWW.SPOT.UL.COM				
GENERAL PROGRAM INSTRUCTIONS AND VERSION NUMBER	Program Operator Rules v					
MANUFACTURER NAME AND ADDRESS	rrollton, GA 30119					
DECLARATION NUMBER	4790297660.118.1					
DECLARED PRODUCT & FUNCTIONAL UNIT OF DECLARED UNIT	Southwire SIMpull® Cab Functional Unit = 1 mete	le-In-Conduit r of installed cable over a 60 year building lifetime				
REFERENCE PCR AND VERSION NUMBER	Services, v1.0, 2017. The Norwegian EPD Fou v1.0, October 2020.	undation: NPCR Part A: Construction Products and undation: NPCR 027 Part B: Electrical Cables and Wires,				
DESCRIPTION OF PRODUCT APPLICATION/USE	Southwire cable products utility, and institutional se	s are primarily used in commercial, residential, industrial, ettings.				
PRODUCT RSL DESCRIPTION	40 Years					
MARKETS OF APPLICABILITY	North America					
DATE OF ISSUE	December 1, 2022					
PERIOD OF VALIDITY	5 Years					
EPD TYPE	Product Specific					
DATASET VARIABILITY	N/A					
EPD SCOPE	Cradle-to-Grave					
YEAR(S) OF REPORTED PRIMARY DATA	2020	20				
LCA SOFTWARE & VERSION NUMBER	SimaPro v9.2					
LCI DATABASE(S) & VERSION NUMBER	Ecoinvent v3.5 & USLCI	USLCI v2.0				
LCIA METHODOLOGY & VERSION NUMBER	TRACI 2.1; CML 4.1					
The sub-category PCR review was conducted by:	•	UL Environment - PCR Review Panel - epd@ul.com				
This declaration was independently verified in accord 2006. EN 15804 serves as the core PCR, with addition the Norwegian EPD Foundation: NPCR Part A: Con Services, v2.0, March 2021 and The Norwegian EPE Part B: Electrical Cables and Wires, v1.0, October 20	Cooper McCollum, UL Environment					
This life cycle assessment was conducted in accordate the reference DCR by:		Sustainable Solutions Corporation				
the reference PCR by: This life cycle assessment was independently verified 14044 and the reference PCR by:	d in accordance with ISO	James Mellentine, Thrive ESG				
		,				

Environmental declarations from different programs (ISO 14025) may not be comparable

Comparison of the environmental performance using EPD information shall consider all relevant information modules over the full life cycle of the products within the building.

This PCR allows EPD comparability only when the same functional requirements between products are ensured and the requirements of ISO 21930:2017 §5.5 are met. It should be noted that different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared.

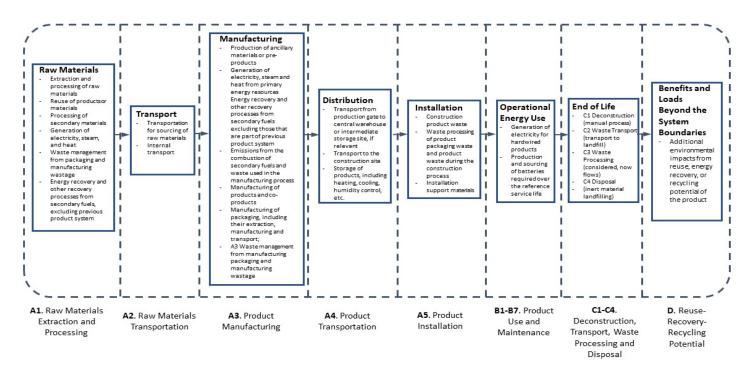
Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

General Information

Description of Company/Organization


A leader in technology and innovation, Southwire Company, LLC is one of North America's largest wire and cable producers. Southwire and its subsidiaries manufacture building wire and cable, metal-clad cable, portable and electronic cord products, overhead and underground transmission and distribution wire and cable products, original equipment manufacturer (OEM) wire products and engineered products. In addition, Southwire supplies assembled products and components, contractor equipment and hand tools, and designs and manufactures systems that produce copper and aluminum rod.

Product Description

Our SIMpull® Cable- In- Conduit is available empty or with 600 V, MV, Fiber, and Specialty Cables of your choice. Our CIC is manufactured by continuously extruding HDPE loosely around the cable assembly with no adhesion between the conduit and the cable, thus leaving the cables free in the conduit. Lubrication is applied to the cable, allowing for cables to be pulled out and replaced if necessary.

This EPD includes results for the following products: 63285601 (4/40), 63191001 (3/40), 63216401 (4/80), 63238599 (4/40), 63256101 (0.75/B), 63308201 (4/11), 63353501 (4/40), 63357301 (4/13.5), 63364201 (4/13.5), 63376099 (4/11).

Flow Diagram

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Manufacturer Specific EPD

An impact assessment was completed for each product listed within the EPD. Each product within the EPD is the largest product size currently available, meaning that the same product may be sold in smaller sizes, and for the specific product recipe with the corresponding number of conductors. Completing an impact assessment for the largest product size within each group ensures that the products with the highest mass per functional unit are represented in the EPD. If impacts for a product within a product group did not fall within the typically allowable variance of ±10%, impacts for each product were reported in the EPD for clarity.

Application

Commonly installed from transformer to transformer or as underground cables exiting substations.

Material Composition

The primary product components and/or materials must be indicated as a percentage mass to enable the user of the EPD to understand the composition of the product in delivery status.

The average composition of a Southwire SIMpull® Cable-In-Conduit Energy Distribution Networks cable is as follows:

	Percentage in mass (%)										
Material	63285601 (4/40)	63191001 (3/40)	63216401 (4/80)	63238599 (4/40)	63256101 (0.75/B)	63308201 (4/11)	63353501 (4/40)	63357301 (4/13.5)	63364201 (4/13.5)		
Colorant	11.57%	0.94%	3.54%	1.13%	1.03%	3.66%	1.12%	1.28%	1.28%		
Conductor	41.30%	52.33%	35.72%	43.52%	48.40%	31.73%	43.64%	35.95%	35.86%		
Cross Filler	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		
Drain Wire	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		
Insulation	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		
Jacketing	47.13%	46.26%	60.75%	55.35%	50.57%	64.38%	54.93%	62.77%	62.61%		
Rip Cord	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		
Tape	0.00%	0.46%	0.00%	0.00%	0.00%	0.22%	0.31%	0.00%	0.25%		
Other	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		
Total	100%	100%	100%	100%	100%	100%	100%	100%	100%		

	Percentage in mass (%)
Material	63376099 (4/11)
Colorant	1.36%
Conductor	31.79%
Cross Filler	0.00%
Drain Wire	0.00%
Insulation	0.00%
Jacketing	66.84%
Rip Cord	0.00%
Таре	0.00%
Other	0.00%
Total	100%

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Placing on the Market / Application Rules

- ASTM D3350 Standard Specification for Polyethylene Plastics Pipe and Fittings Materials
- ASTM D3485 Standard Specification for Coilable High Density Polyethylene (HDPE) Cable in Conduit (CIC)
- ASTM F2160 Standard Specification for Solid Wall High Density Polyethylene (HDPE) Conduit Based on Controlled Outside Diameter (OD)
- UL 1990 Standard for Nonmetallic Underground Conduit with Conductors
- CSA CSA marking is available upon request
- NEMA TC-7 Smooth-Wall Coilable Electrical Polyethylene Conduit

Properties of Declared Product as Shipped

Southwire SIMpull® Cable-In-Conduit Energy Distribution Networks cables are delivered as a complete unit, inclusive of all installation materials and instructions.

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Methodological Framework

Functional Unit

The declaration refers to the functional unit of 1 meter of installed cable as specified in the PCR.

Declared u	nit		Percentage in ma	ss (%)
Product Number	Size	Wall Type	Weight (kg/m)	Conversion factor to 1 kg
63285601	4	SCH40	5.25	0.19
63191001	3	SCH40	3.05	0.33
63216401	4	SCH80	4.47	0.22
63238599	4	SCH40	3.67	0.27
63256101	0.75	EPEC-B	3.30	0.30
63308201	4	EPEC-11	3.44	0.29
63353501	4	EPEC-40	5.04	0.20
63357301	4	EPEC-13.5	4.44	0.23
63364201	4	EPEC-13.5	4.46	0.22
63376099	4	EPEC-11	5.03	0.20

System Boundary

This is a cradle to grave Environmental Product Declaration. The following life cycle phases were considered:

Product Stage				truction ss Stage		Use Stage				Er	nd of Li	fe Staç	je*	Benefits and Loads Beyond the System Boundaries		
Raw material supply	Transport	Manufacturing	Transport from gate to the site	Construction/ installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction /demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling potential
A1	A2	A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х

Description of the System Boundary Stages Corresponding to the PCR
(X = Included; MND = Module Not Declared)

Reference Service Life

The reference service life of a properly installed Southwire SIMpull® Cable-In-Conduit Energy Distribution Networks cable is 40 years. The building estimated service life is 60 years.

Allocation

Allocation was determined on a per meter basis.

^{*}This includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues.

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Cut-off Criteria

Processes whose total contribution to the final result, with respect to their mass and in relation to all considered impact categories, is less than 1% can be neglected. The sum of the neglected processes may not exceed 5% by mass of the considered impact categories. For that a documented assumption is admissible.

For Hazardous Substances the following requirements apply:

- The Life Cycle Inventory (LCI) of hazardous substances will be included, if the inventory is available.
- If the LCI for a hazardous substance is not available, the substance will appear as an input in the LCI of the product, if its mass represents more than 0.1% of the product composition.
- If the LCI of a hazardous substance is approximated by modeling another substance, documentation will be provided.

This EPD is in compliance with the cut-off criteria. No processes were neglected or excluded unless specifically stated in the EPD. Capital items for the production processes (machine, buildings, etc.) were not taken into consideration.

Data Sources

Primary data were collected for every process in the product system under the control of Southwire. Secondary data from the ecoinvent database were utilized when necessary. These data were evaluated and have temporal, geographic, and technical coverage appropriate to the scope of the product category.

Data Quality

The data sources used are complete and representative of North American systems in terms of the geographic and technological coverage and are a recent vintage (i.e. less than ten years old). The data used for primary data are based on direct information sources of the manufacturers. Secondary data sets were used for raw materials extraction and processing, end of life, transportation, and energy production flows. Wherever secondary data is used, the study adopts critically reviewed data for consistency, precision, and reproducibility to limit uncertainty.

Period Under Review

The period under review is the full calendar year of 2020.

Treatment of Biogenic Carbon

The uptake and release of biogenic carbon throughout the product life cycle follows ISO 21930:2017 Section 7.2.7.

Comparability and Benchmarking

A comparison or an evaluation of EPD data is only possible if all data sets to be compared were created according to EN 15804 and the building context, respectively the product-specific characteristics of performance, are taken into account. Environmental declarations from different programs may not be comparable. Full conformance with the PCR allows for EPD comparability only when all stages a product's life cycle have been considered. However, variations and deviations are possible.

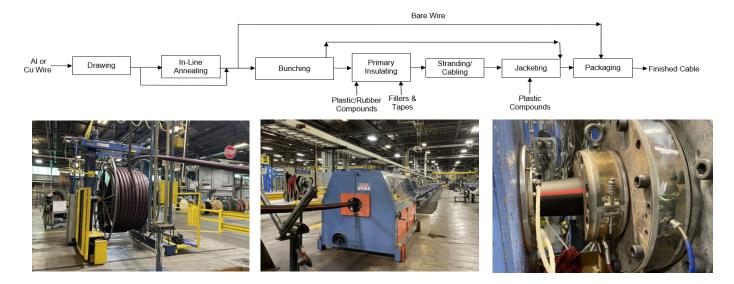
Units

The LCA results within this EPD are reported in SI units.

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017


Additional Environmental Information

Background data

For life cycle modeling of the considered products, the SimaPro v9.2 Software System for Life Cycle Engineering, developed by PRe Sustainability, is used. The ecoinvent database contains consistent and documented datasets which are documented online. To ensure comparability of results in the LCA, the basic data of the ecoinvent database were used for energy, transportation, and auxiliary materials.

Manufacturing

All wire and cable products in this study include a conductor. The conductor is made of some metal, primarily copper or aluminum, and is annealed and formed into strands by a drawing process. The conductors are bunched together, sometimes after having an insulating material applied in an extrusion process. Cables that are not bare cables include some sort of insulation and possibly a jacket. The cables that include jacketing go through jacket extrusion after the wires have been bunched.

Packaging

All packaging is fully recyclable. The packaging material is composed primarily of wood, with cardboard and plastic materials used for individual product packaging. Packaging can vary based on final product size and length. The percent breakdown of packaging is based on manufacturing facilities but actual amounts will be based on the product's final weight or density.

	Quantity (% By Weight)
Material	Value
Cardboard	0.00%
Other	23.06%
Plastic	0.03%
Wood	76.91%
Total	100.00%

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Transformation

Transport to Building Site (A4)									
Name	Value	Unit							
Fuel type	Die	esel							
Liters of fuel	38	l/100km							
Transport distance	300	km							
Capacity utilization (including empty runs)	-	%							
Gross density of products transported	-	kg/m ³							
Weight of products transported	-	kg							
Volume of products transported	-	m ³							
Capacity utilization volume factor	0.9	-							

Product Installation

Southwire SIMpull® Cable-In-Conduit Energy Distribution Networks cables are distributed through and installed by trained installation technicians adhering to local/national standards and requirements. Installation accounts for the energy consumption, material wastage, and support materials use during the installation process, as well as waste treatment of packaging materials. The installation scrap was assumed to be a 5% average in accordance with the PCR. Installation is typically completed using battery-powered equipment, but this is below the cut-off criteria.

	Installation into the building (A5)										
Name	63285601 (4/40)	63191001 (3/40)	63216401 (4/80)	63238599 (4/40)	63256101 (0.75/B)	63308201 (4/11)	63353501 (4/40)	63357301 (4/13.5)	Unit		
Auxiliary materials	-	-	-	-	-	-	-	-	kg		
Water consumption	-	-	-	-	-	-	-	-	m^3		
Other resources	-	-	-	-	-	-	-	-	kg		
Electricity consumption	-	-	-	-	-	-	-	-	kWh		
Other energy carriers	-	-	-	-	-	-	-	-	MJ		
Product loss per functional unit	0.26	0.15	0.22	0.18	0.17	0.25	0.18	0.22	kg		
Waste materials at construction site	0.26	0.15	0.22	0.18	0.17	0.25	0.18	0.22	kg		
Output substance (recycle)	0.09	0.07	0.07	0.07	0.07	0.07	0.07	0.07	kg		
Output substance (landfill)	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	kg		
Output substance (incineration)	0.15	0.07	0.14	0.10	0.09	0.17	0.10	0.14	kg		
Packaging waste (recycle)	0.59	0.34	0.50	0.41	0.37	0.56	0.41	0.50	kg		
Packaging waste (landfill)	0.19	0.11	0.16	0.13	0.12	0.18	0.13	0.16	kg		
Packaging waste (incineration)	0.05	0.03	0.04	0.03	0.03	0.05	0.03	0.04	kg		
Direct emissions to ambient air*, soil, and water	0.17	0.10	0.14	0.12	0.10	0.16	0.12	0.14	kg CO ₂		
VOC emissions	-	-	-	-	-	-	-	-	kg		

^{*}CO2 emissions to air from disposal of packaging

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Installation	Installation into the building (A5)										
Name	63364201 (4/13.5)	63376099 (4/11)	Unit								
Auxiliary materials	-	-	kg								
Water consumption	=	-	m ³								
Other resources	-	-	kg								
Electricity consumption	-	-	kWh								
Other energy carriers	-	-	MJ								
Product loss per functional unit	0.22	0.25	kg								
Waste materials at construction site	0.22	0.25	kg								
Output substance (recycle)	0.07	0.07	kg								
Output substance (landfill)	0.01	0.01	kg								
Output substance (incineration)	0.14	0.17	kg								
Packaging waste (recycle)	0.50	0.56	kg								
Packaging waste (landfill)	0.16	0.18	kg								
Packaging waste (incineration)	0.04	0.05	kg								
Direct emissions to ambient air*, soil, and water	0.14	0.16	kg CO ₂								
VOC emissions	-	-	kg								

^{*}CO2 emissions to air from disposal of packaging

Reference Service Life								
Name	Value	Unit						
Reference Service Life	40	years						
Estimated Building Service Life	60	years						
Number of Replacements	1	number						

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Product Use

No cleaning, maintenance, repair, or refurbishment is required.

Operational energy use was modeled as use phase losses determined by the IEC 61156-5 standard. The maximum loss values for each cable category are detailed in the table below and were used in the B6 stage.

Operational Energy Us	Operational Energy Use (B6)										
Name	63285601 (4/40)	63191001 (3/40)	63216401 (4/80)	63238599 (4/40)	63256101 (0.75/B)	63308201 (4/11)	63353501 (4/40)	63357301 (4/13.5)	63364201 (4/13.5)	Unit	
Water consumption (from tap, to sewer)	-	-	-	-	-	-	-	-	-	m³	
Electricity consumption	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	kWh	
Other energy carriers	-	-	-	-	-	-	-	-	-	MJ	
Equipment output	-	-	-	-	-	-	-	-	-	kW	
Direct emissions to ambient air, soil, and water	-	-	-	-	-	-	-	-	-	kg	

Operational Energy Use (B6)									
Name	63376099 (4/11)	Unit							
Water consumption (from tap, to sewer)	-	m³							
Electricity consumption	0.05	kWh							
Other energy carriers	-	MJ							
Equipment output	-	kW							
Direct emissions to ambient air, soil, and water	-	kg							

The equation below was used to calculate the electricity used in the B6 stage.

$$E=Z \times I^2 \times \Delta t$$
 (Equation 1)

Where Z is the linear resistivity of the cable, I is the current, and t is the time that they are used for.

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Disposal

The product can be mechanically dissembled to separate the different materials. 85% of the metals used are recyclable, the remining 15% of metals are sent to landfill. The remainder of components are disposed of through waste incineration with energy recovery, in accordance with the PCR.

End of life (C1-C4)									
Name	63285601 (4/40)	63191001 (3/40)	63216401 (4/80)	63238599 (4/40)	63256101 (0.75/B)	63308201 (4/11)	63353501 (4/40)	63357301 (4/13.5)	63364201 (4/13.5)	Unit
Collected separately	1.84	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	kg
Collected as mixed construction waste	3.41	1.70	3.12	2.31	1.94	3.68	2.30	3.09	3.10	kg
Reuse	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	kg
Recycling	1.84	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	kg
Landfilling	0.33	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	kg
Incineration with energy recovery	3.08	1.46	2.88	2.07	1.70	3.44	2.06	2.85	2.86	kg
Energy conversion	44.00	44.00	44.00	44.00	44.00	44.00	44.00	44.00	44.00	%
Removals of biogenic carbon	-	-	-	-	-	-	-	-	-	kg

End of life (C1-C4	.)	
Name	63376099 (4/11)	Unit
Collected separately	1.36	kg
Collected as mixed construction waste	3.67	kg
Reuse	0.00	kg
Recycling	1.36	kg
Landfilling	0.24	kg
Incineration with energy recovery	3.43	kg
Energy conversion	44.00	%
Removals of biogenic carbon	-	kg

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Re-use Phase

Re-use of the product is not common due to the nature of hard-wiring the product into the building system.

Re-Use, recovery, A	nd/Or Recy	cling Poter	ntial (D)							
Name	63285601 (4/40)	63191001 (3/40)	63216401 (4/80)	63238599 (4/40)	63256101 (0.75/B)	63308201 (4/11)	63353501 (4/40)	63357301 (4/13.5)	63364201 (4/13.5)	Unit
Net energy benefit from energy recovery from waste treatment declared as exported energy in C3 (R>0.6)	60.47	28.55	56.44	40.70	33.43	67.45	40.48	55.86	56.07	MJ
Net energy benefit from thermal energy due to treatment of waste declared as exported energy in C4 (R<0.6)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	MJ
Net energy benefit from material flow declared in C3 for energy recovery	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	MJ
Process and conversion	efficiencies									
Further assumptions for development (e.g. further technologies, assumption correction factors);	er processing									

Re-Use, recovery, A	nd/Or Recy	cling Poter	ntial (D)
Name	6337609	99 (4/11)	Unit
Net energy benefit from energy recovery from waste treatment declared as exported energy in C3 (R>0.6)	67	.26	MJ
Net energy benefit from thermal energy due to treatment of waste declared as exported energy in C4 (R<0.6)	0.	00	MJ
Net energy benefit from material flow declared in C3 for energy recovery	0.	00	MJ
Process and conversion	efficiencies		
Further assumptions for development (e.g. further technologies, assumption correction factors);	er processing		

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Results - 63285601 (4/40)

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	5.3E+01	1.5E-01	1.7E-02	6.1E+01	3.3E-02	4.9E-02	7.5E+00	1.8E-01	-8.1E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	2.4E-06	5.8E-12	6.7E-10	2.6E-06	5.3E-13	1.9E-12	1.5E-07	1.2E-08	-2.5E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	4.2E-01	9.2E-04	6.5E-05	4.3E-01	2.8E-04	2.9E-04	3.3E-03	5.1E-04	-7.4E-01
EP	Eutrophication potential	kg N-Eq.	7.8E-01	5.1E-05	9.4E-04	7.8E-01	3.8E-06	1.6E-05	1.7E-03	1.5E-03	-1.1E+00
SP	Smog formation potential	kg O ₃ -Eq.	5.0E+00	2.5E-02	1.8E-03	5.1E+00	1.9E-03	8.0E-03	5.2E-02	1.1E-02	-7.7E+00
FFD	Fossil Fuel Depletion	MJ-surplus	5.1E+01	2.9E-01	2.1E-02	5.2E+01	2.8E-02	9.3E-02	6.8E-01	1.2E-01	-5.5E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 lı	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	5.3E+01	1.5E-01	1.8E-02	6.1E+01	3.3E-02	4.9E-02	7.5E+00	1.8E-01	-8.1E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.8E-06	5.8E-12	5.0E-10	1.9E-06	5.3E-13	1.9E-12	1.5E-07	1.2E-08	-2.5E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	4.1E-01	7.6E-04	5.4E-05	4.2E-01	2.8E-04	2.9E-04	3.3E-03	5.1E-04	-7.4E-01
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	3.5E-01	1.3E-04	3.5E-04	3.5E-01	3.8E-06	1.6E-05	1.7E-03	1.5E-03	-1.1E+00
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	2.0E-02	3.5E-05	4.2E-06	9.1E-02	1.9E-03	8.0E-03	5.2E-02	1.1E-02	-7.7E+00
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	1.6E-03	0.0E+00	6.9E-09	9.0E-01	2.8E-02	9.3E-02	6.8E-01	1.2E-01	-5.5E+01
ADPF	Abiotic depletion potential for fossil resources	MJ	6.4E+02	2.0E+00	1.5E-01	6.5E+02	3.3E-02	4.9E-02	7.5E+00	1.8E-01	-8.1E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource l	Jse				<u> </u>						
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	5.6E+01	0.0E+00	8.0E-04	5.6E+01	0.0E+00	0.0E+00	6.1E-01	4.8E-02	-4.1E+01
RPR_{M}	Renewable primary energy resources as material utilization	MJ	1.0E+01	0.0E+00	5.1E-01	1.1E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	5.6E+02	2.0E+00	1.5E-01	5.7E+02	4.6E-01	6.3E-01	6.4E+00	1.1E+00	-9.1E+02
NRPR _M	Nonrenewable primary energy as material utilization	MJ	1.4E+02	0.0E+00	6.9E+00	1.4E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
RSF	Use of renewable secondary fuels	MJ	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
RE	Energy recovered from disposed waste	MJ	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	-9.5E+02
FW	Use of net fresh water	m ³	2.2E-01	0.0E+00	3.1E-05	4.2E-01	0.0E+00	0.0E+00	2.0E-01	5.9E-04	-1.9E-01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flow	s and Waste Categories	3									
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	9.3E-05	0.0E+00	4.7E-06	9.8E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	8.3E-02	0.0E+00	2.0E-01	6.1E-01	0.0E+00	0.0E+00	0.0E+00	3.3E-01	0.0E+00
HLRW	High-level radioactive waste	kg	2.2E-01	0.0E+00	3.1E-05	2.2E-01	0.0E+00	0.0E+00	3.0E-05	5.5E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	2.7E-01	0.0E+00	6.0E-01	2.7E+00	0.0E+00	0.0E+00	1.8E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	4.9E-02	3.1E+00	0.0E+00	0.0E+00	3.1E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	6.0E+01	0.0E+00	0.0E+00	6.0E+01	0.0E+00	0.0E+00

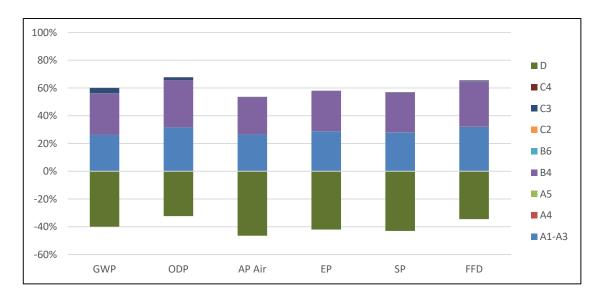
^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource L	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.7E-01	0.0E+00	0.0E+00	1.7E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	1.7E-01	1.7E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO₂	0.0E+00								

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable



According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Interpretation - 63285601 (3/40)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Results - 63191001 (4/80)

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.3E+01	8.9E-02	9.7E-03	4.7E+01	3.3E-02	2.8E-02	3.7E+00	8.7E-02	-6.5E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.8E-06	3.4E-12	3.9E-10	1.9E-06	5.3E-13	1.1E-12	7.3E-08	6.0E-09	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.2E-01	5.3E-04	3.8E-05	3.2E-01	2.8E-04	1.7E-04	1.6E-03	2.5E-04	-5.3E-01
EP	Eutrophication potential	kg N-Eq.	2.1E-01	3.0E-05	5.5E-04	2.1E-01	3.8E-06	9.4E-06	8.5E-04	7.7E-04	-2.9E-01
SP	Smog formation potential	kg O₃-Eq.	3.0E+00	1.5E-02	1.0E-03	3.0E+00	1.9E-03	4.6E-03	2.6E-02	5.3E-03	-4.5E+00
FFD	Fossil Fuel Depletion	MJ-surplus	2.9E+01	1.7E-01	1.2E-02	2.9E+01	2.8E-02	5.4E-02	3.4E-01	6.1E-02	-3.3E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 lr	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.3E+01	8.9E-02	1.1E-02	4.7E+01	3.3E-02	2.8E-02	3.7E+00	8.7E-02	-6.5E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.3E-06	3.4E-12	2.9E-10	1.4E-06	5.3E-13	1.1E-12	7.3E-08	6.0E-09	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.3E-01	4.4E-04	3.1E-05	3.3E-01	2.8E-04	1.7E-04	1.6E-03	2.5E-04	-5.3E-01
EP	Eutrophication potential	$kg(PO_4)^3$ -Eq.	1.0E-01	7.8E-05	2.0E-04	1.0E-01	3.8E-06	9.4E-06	8.5E-04	7.7E-04	-2.9E-01
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.7E-02	2.0E-05	2.4E-06	5.3E-02	1.9E-03	4.6E-03	2.6E-02	5.3E-03	-4.5E+00
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	6.2E-05	0.0E+00	4.0E-09	4.5E-01	2.8E-02	5.4E-02	3.4E-01	6.1E-02	-3.3E+01
ADPF	Abiotic depletion potential for fossil resources	MJ	4.6E+02	1.1E+00	8.5E-02	4.7E+02	3.3E-02	2.8E-02	3.7E+00	8.7E-02	-6.5E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource l	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	2.3E+01	0.0E+00	4.7E-04	2.3E+01	0.0E+00	0.0E+00	3.0E-01	2.4E-02	-9.9E+00
RPR_{M}	Renewable primary energy resources as material utilization	MJ	5.9E+00	0.0E+00	2.9E-01	6.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	4.4E+02	1.1E+00	8.6E-02	4.5E+02	4.6E-01	3.6E-01	3.2E+00	5.7E-01	-6.9E+02
$NRPR_M$	Nonrenewable primary energy as material utilization	MJ	6.5E+01	0.0E+00	3.2E+00	6.8E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-7.0E+02							
FW	Use of net fresh water	m ³	1.3E-01	0.0E+00	1.8E-05	2.3E-01	0.0E+00	0.0E+00	1.0E-01	2.9E-04	-1.2E-01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flow	s and Waste Categories	3									
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	5.4E-05	0.0E+00	2.7E-06	5.7E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	4.8E-02	0.0E+00	1.1E-01	4.0E-01	0.0E+00	0.0E+00	0.0E+00	2.4E-01	0.0E+00
HLRW	High-level radioactive waste	kg	1.3E-01	0.0E+00	1.8E-05	1.3E-01	0.0E+00	0.0E+00	1.5E-05	2.7E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	1.6E-01	0.0E+00	3.5E-01	1.9E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	2.9E-02	1.5E+00	0.0E+00	0.0E+00	1.5E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	2.9E+01	0.0E+00	0.0E+00	2.9E+01	0.0E+00	0.0E+00

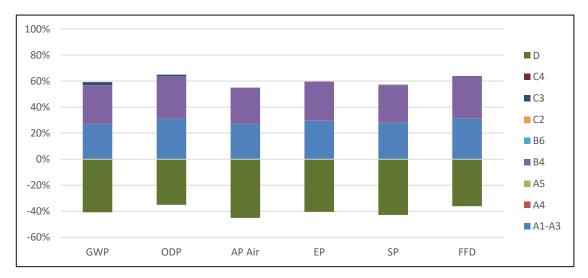
^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource L	Resource Use Parameter Unit A1-A3 A4 A5 B4 B6 C2 C3 C4 D													
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D			
BCRP	Biogenic Carbon Removal from Product	kg CO₂	0.0E+00											
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00											
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	9.6E-02	0.0E+00	0.0E+00	9.6E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00			
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	9.6E-02	9.6E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00			
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00											
CCE	Calcination Carbon Emissions	kg CO₂	0.0E+00											
CCR	Carbonation Carbon Removal	kg CO₂	0.0E+00											
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO₂	0.0E+00											

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable



According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Interpretation - 63191001 (3/40)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

LCA Results - 63216401 (4/80)

Results shown below were calculated using TRACI 2.1 Methodology.

				- 57							
TRACI 2.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.8E+01	1.3E-01	1.4E-02	5.5E+01	3.3E-02	4.1E-02	6.9E+00	1.6E-01	-7.3E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	2.1E-06	5.0E-12	5.7E-10	2.2E-06	5.3E-13	1.6E-12	1.3E-07	1.1E-08	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.4E-01	7.8E-04	5.5E-05	3.4E-01	2.8E-04	2.5E-04	3.0E-03	4.7E-04	-6.0E-01
EP	Eutrophication potential	kg N-Eq.	2.3E-01	4.3E-05	8.0E-04	2.3E-01	3.8E-06	1.4E-05	1.6E-03	1.4E-03	-2.9E-01
SP	Smog formation potential	kg O ₃ -Eq.	3.2E+00	2.1E-02	1.5E-03	3.3E+00	1.9E-03	6.8E-03	4.8E-02	9.8E-03	-4.9E+00
FFD	Fossil Fuel Depletion	MJ-surplus	4.2E+01	2.5E-01	1.8E-02	4.3E+01	2.8E-02	7.9E-02	6.3E-01	1.1E-01	-4.7E+01

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.8E+01	1.3E-01	1.6E-02	5.5E+01	3.3E-02	4.1E-02	6.9E+00	1.6E-01	-7.3E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.5E-06	4.9E-12	4.3E-10	1.7E-06	5.3E-13	1.6E-12	1.3E-07	1.1E-08	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO₂-Eq.	3.5E-01	6.4E-04	4.6E-05	3.5E-01	2.8E-04	2.5E-04	3.0E-03	4.7E-04	-6.0E-01
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	1.1E-01	1.1E-04	3.0E-04	1.1E-01	3.8E-06	1.4E-05	1.6E-03	1.4E-03	-2.9E-01
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.8E-02	3.0E-05	3.6E-06	8.3E-02	1.9E-03	6.8E-03	4.8E-02	9.8E-03	-4.9E+00
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	8.7E-05	0.0E+00	5.9E-09	8.2E-01	2.8E-02	7.9E-02	6.3E-01	1.1E-01	-4.7E+01
ADPF	Abiotic depletion potential for fossil resources	MJ	5.6E+02	1.7E+00	1.3E-01	5.7E+02	3.3E-02	4.2E-02	6.9E+00	1.6E-01	-7.4E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource L	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	3.2E+01	0.0E+00	6.8E-04	3.3E+01	0.0E+00	0.0E+00	5.6E-01	4.4E-02	-9.9E+00
RPR _M	Renewable primary energy resources as material utilization	MJ	8.6E+00	0.0E+00	4.3E-01	9.1E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	4.9E+02	1.7E+00	1.3E-01	5.0E+02	4.6E-01	5.3E-01	5.8E+00	1.1E+00	-8.2E+02
NRPR _M	Nonrenewable primary energy as material utilization	MJ	1.3E+02	0.0E+00	6.4E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-8.3E+02							
FW	Use of net fresh water	m ³	1.6E-01	0.0E+00	2.7E-05	3.5E-01	0.0E+00	0.0E+00	1.9E-01	5.4E-04	-1.2E-01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flow	s and Waste Categories	3									
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	8.0E-05	0.0E+00	4.0E-06	8.4E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	7.1E-02	0.0E+00	1.7E-01	4.8E-01	0.0E+00	0.0E+00	0.0E+00	2.4E-01	0.0E+00
HLRW	High-level radioactive waste	kg	1.6E-01	0.0E+00	2.7E-05	1.6E-01	0.0E+00	0.0E+00	2.8E-05	5.0E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	2.3E-01	0.0E+00	5.1E-01	2.1E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	4.2E-02	2.9E+00	0.0E+00	0.0E+00	2.9E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	5.6E+01	0.0E+00	0.0E+00	5.6E+01	0.0E+00	0.0E+00

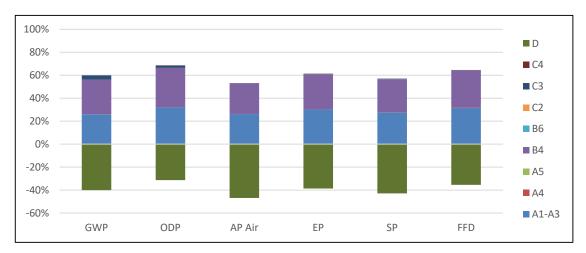
^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource L	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.4E-01	0.0E+00	0.0E+00	1.4E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO₂	0.0E+00	0.0E+00	1.4E-01	1.4E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO₂	0.0E+00								

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable



According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Interpretation - 63216401 (4/80)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

LCA Results - 63238599 (4/40)

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.5E+01	1.1E-01	1.2E-02	5.0E+01	3.3E-02	3.4E-02	5.1E+00	1.2E-01	-6.8E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.9E-06	4.1E-12	4.7E-10	2.0E-06	5.3E-13	1.3E-12	1.0E-07	8.2E-09	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.3E-01	6.4E-04	4.5E-05	3.3E-01	2.8E-04	2.0E-04	2.2E-03	3.5E-04	-5.6E-01
EP	Eutrophication potential	kg N-Eq.	2.2E-01	3.6E-05	6.6E-04	2.2E-01	3.8E-06	1.1E-05	1.2E-03	1.0E-03	-2.9E-01
SP	Smog formation potential	kg O ₃ -Eq.	3.1E+00	1.8E-02	1.2E-03	3.1E+00	1.9E-03	5.6E-03	3.6E-02	7.3E-03	-4.7E+00
FFD	Fossil Fuel Depletion	MJ-surplus	3.4E+01	2.1E-01	1.5E-02	3.5E+01	2.8E-02	6.5E-02	4.6E-01	8.3E-02	-3.9E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 li	CML 4.1 Impact Assessment													
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D			
GWP	Global warming potential	kg CO ₂ -Eq.	4.5E+01	1.1E-01	1.3E-02	5.1E+01	3.3E-02	3.4E-02	5.1E+00	1.2E-01	-6.8E+01			
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.4E-06	4.0E-12	3.5E-10	1.5E-06	5.3E-13	1.3E-12	1.0E-07	8.2E-09	-2.0E-06			
AP Air	Acidification potential for air emissions	kg SO₂-Eq.	3.4E-01	5.3E-04	3.8E-05	3.4E-01	2.8E-04	2.0E-04	2.2E-03	3.5E-04	-5.6E-01			
EP	Eutrophication potential	kg(PO₄)³-Eq.	1.0E-01	9.4E-05	2.4E-04	1.1E-01	3.8E-06	1.1E-05	1.2E-03	1.0E-03	-2.9E-01			
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.8E-02	2.4E-05	2.9E-06	6.6E-02	1.9E-03	5.6E-03	3.6E-02	7.3E-03	-4.7E+00			
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	7.3E-05	0.0E+00	4.8E-09	6.1E-01	2.8E-02	6.5E-02	4.6E-01	8.3E-02	-3.9E+01			
ADPF	Abiotic depletion potential for fossil resources	MJ	5.1E+02	1.4E+00	1.0E-01	5.1E+02	3.3E-02	3.4E-02	5.1E+00	1.2E-01	-6.9E+01			

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource Use Parameter Parameter Unit A1-A3 A4 A5 B4 B6 C2 C3 C4 D													
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D		
RPR_{E}	Renewable primary energy as energy carrier	MJ	2.7E+01	0.0E+00	5.6E-04	2.7E+01	0.0E+00	0.0E+00	4.2E-01	3.2E-02	-9.9E+00		
RPR_M	Renewable primary energy resources as material utilization	MJ	7.1E+00	0.0E+00	3.5E-01	7.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	4.6E+02	1.4E+00	1.0E-01	4.7E+02	4.6E-01	4.4E-01	4.3E+00	7.8E-01	-7.5E+02		
$NRPR_M$	Nonrenewable primary energy as material utilization	MJ	9.2E+01	0.0E+00	4.6E+00	9.7E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		
SM	Use of secondary material	kg	0.0E+00										
RSF	Use of renewable secondary fuels	MJ	0.0E+00										
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00										
RE	Energy recovered from disposed waste	MJ	0.0E+00	-7.6E+02									
FW	Use of net fresh water	m ³	1.4E-01	0.0E+00	2.2E-05	2.8E-01	0.0E+00	0.0E+00	1.4E-01	4.0E-04	-1.2E-01		

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flow	s and Waste Categories	;									
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	6.5E-05	0.0E+00	3.3E-06	6.9E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	5.8E-02	0.0E+00	1.4E-01	4.4E-01	0.0E+00	0.0E+00	0.0E+00	2.4E-01	0.0E+00
HLRW	High-level radioactive waste	kg	1.4E-01	0.0E+00	2.2E-05	1.4E-01	0.0E+00	0.0E+00	2.0E-05	3.8E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	1.9E-01	0.0E+00	4.2E-01	2.0E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	3.4E-02	2.1E+00	0.0E+00	0.0E+00	2.1E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00	4.1E+01	0.0E+00	0.0E+00

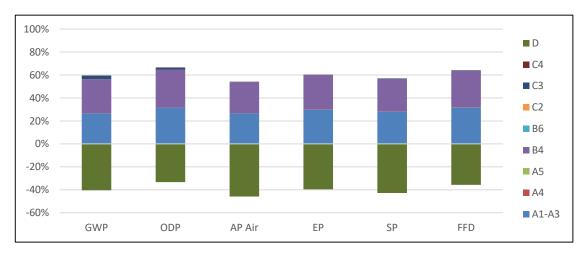
^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource l	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	1.2E-01	1.2E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO₂	0.0E+00								

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable



According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Interpretation - 63238599 (4/40)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

LCA Results - 63256101 (0.75/B)

Results shown below were calculated using TRACI 2.1 Methodology.

RACI 2.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.4E+01	9.6E-02	1.1E-02	4.8E+01	3.3E-02	3.1E-02	4.3E+00	1.0E-01	-6.6E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.9E-06	3.7E-12	4.2E-10	1.9E-06	5.3E-13	1.2E-12	8.4E-08	6.9E-09	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.2E-01	5.8E-04	4.1E-05	3.3E-01	2.8E-04	1.8E-04	1.9E-03	2.9E-04	-5.4E-01
EP	Eutrophication potential	kg N-Eq.	2.1E-01	3.2E-05	5.9E-04	2.2E-01	3.8E-06	1.0E-05	9.7E-04	8.8E-04	-2.9E-01
SP	Smog formation potential	kg O ₃ -Eq.	3.0E+00	1.6E-02	1.1E-03	3.1E+00	1.9E-03	5.0E-03	3.0E-02	6.1E-03	-4.6E+00
FFD	Fossil Fuel Depletion	MJ-surplus	3.1E+01	1.8E-01	1.3E-02	3.2E+01	2.8E-02	5.9E-02	3.9E-01	7.0E-02	-3.6E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 li	mpact Assessment	_	-								
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.4E+01	9.7E-02	1.2E-02	4.8E+01	3.3E-02	3.1E-02	4.3E+00	1.0E-01	-6.6E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.3E-06	3.6E-12	3.2E-10	1.4E-06	5.3E-13	1.2E-12	8.4E-08	6.9E-09	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.3E-01	4.7E-04	3.4E-05	3.4E-01	2.8E-04	1.8E-04	1.9E-03	2.9E-04	-5.4E-01
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	1.0E-01	8.4E-05	2.2E-04	1.0E-01	3.8E-06	1.0E-05	9.7E-04	8.8E-04	-2.9E-01
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.7E-02	2.2E-05	2.6E-06	5.8E-02	1.9E-03	5.0E-03	3.0E-02	6.1E-03	-4.6E+00
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	6.7E-05	0.0E+00	4.3E-09	5.2E-01	2.8E-02	5.9E-02	3.9E-01	7.0E-02	-3.6E+01
ADPF	Abiotic depletion potential for fossil resources	MJ	4.8E+02	1.2E+00	9.2E-02	4.9E+02	3.3E-02	3.1E-02	4.3E+00	1.0E-01	-6.6E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource l	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	2.5E+01	0.0E+00	5.0E-04	2.5E+01	0.0E+00	0.0E+00	3.5E-01	2.7E-02	-9.9E+00
RPR _M	Renewable primary energy resources as material utilization	MJ	6.4E+00	0.0E+00	3.2E-01	6.7E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	4.5E+02	1.2E+00	9.3E-02	4.6E+02	4.6E-01	3.9E-01	3.6E+00	6.6E-01	-7.2E+02
$NRPR_{M}$	Nonrenewable primary energy as material utilization	MJ	7.6E+01	0.0E+00	3.8E+00	8.0E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-7.3E+02							
FW	Use of net fresh water	m ³	1.3E-01	0.0E+00	2.0E-05	2.5E-01	0.0E+00	0.0E+00	1.2E-01	3.4E-04	-1.2E-01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flow	s and Waste Categories	3									
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	5.9E-05	0.0E+00	2.9E-06	6.2E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	5.2E-02	0.0E+00	1.2E-01	4.2E-01	0.0E+00	0.0E+00	0.0E+00	2.4E-01	0.0E+00
HLRW	High-level radioactive waste	kg	1.3E-01	0.0E+00	2.0E-05	1.3E-01	0.0E+00	0.0E+00	1.7E-05	3.1E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	1.7E-01	0.0E+00	3.8E-01	1.9E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	3.1E-02	1.7E+00	0.0E+00	0.0E+00	1.7E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	3.3E+01	0.0E+00	0.0E+00	3.3E+01	0.0E+00	0.0E+00

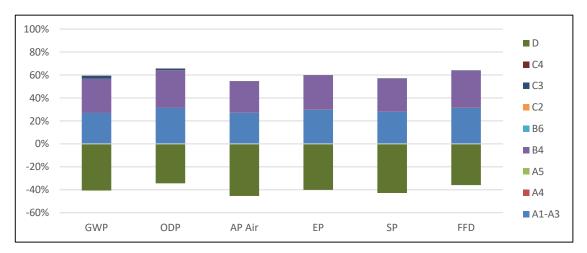
^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

lesource l	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.0E-01	0.0E+00	0.0E+00	1.0E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	1.0E-01	1.0E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO₂	0.0E+00								

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable



According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Interpretation - 63256101 (0.75/B)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

LCA Results - 63308201 (4/11)

Results shown below were calculated using TRACI 2.1 Methodology.

RACI 2.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	5.0E+01	1.5E-01	1.6E-02	5.8E+01	3.3E-02	4.7E-02	8.1E+00	1.9E-01	-7.7E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	2.2E-06	5.6E-12	6.4E-10	2.4E-06	5.3E-13	1.8E-12	1.6E-07	1.3E-08	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.5E-01	8.8E-04	6.2E-05	3.5E-01	2.8E-04	2.8E-04	3.6E-03	5.5E-04	-6.3E-01
EP	Eutrophication potential	kg N-Eq.	2.3E-01	4.9E-05	9.0E-04	2.4E-01	3.8E-06	1.6E-05	1.8E-03	1.7E-03	-2.9E-01
SP	Smog formation potential	kg O ₃ -Eq.	3.3E+00	2.4E-02	1.7E-03	3.4E+00	1.9E-03	7.6E-03	5.7E-02	1.2E-02	-5.1E+00
FFD	Fossil Fuel Depletion	MJ-surplus	4.7E+01	2.8E-01	2.1E-02	4.8E+01	2.8E-02	9.0E-02	7.4E-01	1.3E-01	-5.2E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	5.0E+01	1.5E-01	1.8E-02	5.8E+01	3.3E-02	4.7E-02	8.1E+00	1.9E-01	-7.7E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.6E-06	5.6E-12	4.8E-10	1.8E-06	5.3E-13	1.8E-12	1.6E-07	1.3E-08	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO₂-Eq.	3.5E-01	7.3E-04	5.1E-05	3.6E-01	2.8E-04	2.8E-04	3.6E-03	5.5E-04	-6.3E-01
EP	Eutrophication potential	kg(PO₄)³-Eq.	1.1E-01	1.3E-04	3.3E-04	1.1E-01	3.8E-06	1.6E-05	1.8E-03	1.7E-03	-2.9E-01
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.9E-02	3.3E-05	4.0E-06	9.5E-02	1.9E-03	7.6E-03	5.7E-02	1.2E-02	-5.1E+00
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	9.6E-05	0.0E+00	6.6E-09	9.6E-01	2.8E-02	9.0E-02	7.4E-01	1.3E-01	-5.2E+01
ADPF	Abiotic depletion potential for fossil resources	MJ	6.0E+02	1.9E+00	1.4E-01	6.1E+02	3.3E-02	4.7E-02	8.1E+00	1.9E-01	-7.7E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource U	lse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	3.5E+01	0.0E+00	7.7E-04	3.6E+01	0.0E+00	0.0E+00	6.6E-01	5.2E-02	-9.9E+00
RPR_M	Renewable primary energy resources as material utilization	MJ	9.7E+00	0.0E+00	4.9E-01	1.0E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	5.0E+02	1.9E+00	1.4E-01	5.2E+02	4.6E-01	6.0E-01	6.9E+00	1.2E+00	-8.7E+02
NRPR _M	Nonrenewable primary energy as material utilization	MJ	1.5E+02	0.0E+00	7.7E+00	1.6E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-8.8E+02							
FW	Use of net fresh water	m ³	1.8E-01	0.0E+00	3.0E-05	4.0E-01	0.0E+00	0.0E+00	2.2E-01	6.4E-04	-1.2E-01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flows	s and Waste Categories	3									
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	9.0E-05	0.0E+00	4.5E-06	9.4E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	8.0E-02	0.0E+00	1.9E-01	5.1E-01	0.0E+00	0.0E+00	0.0E+00	2.4E-01	0.0E+00
HLRW	High-level radioactive waste	kg	1.8E-01	0.0E+00	3.0E-05	1.8E-01	0.0E+00	0.0E+00	3.3E-05	6.0E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	2.6E-01	0.0E+00	5.8E-01	2.2E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	4.7E-02	3.5E+00	0.0E+00	0.0E+00	3.4E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00

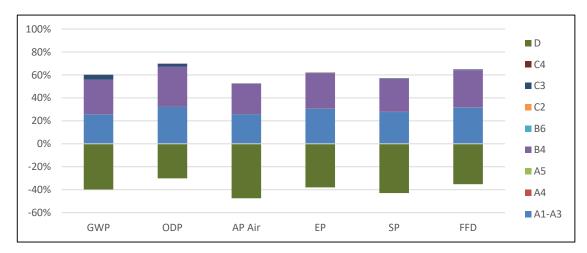
^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

esource l	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00	0.0E+0							
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00	0.0E+0							
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.6E-01	0.0E+00	0.0E+00	1.6E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	1.6E-01	1.6E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00	0.0E+0							
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00	0.0E+0							
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00	0.0E+0							
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.0E+00	0.0E+0							

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable



According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Interpretation - 63308201 (4/11)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

LCA Results - 63353501 (4/40)

Results shown below were calculated using TRACI 2.1 Methodology.

		U		3,							
TRACI 2.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.5E+01	1.1E-01	1.2E-02	5.0E+01	3.3E-02	3.4E-02	5.1E+00	1.2E-01	-6.8E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.9E-06	4.1E-12	4.6E-10	2.0E-06	5.3E-13	1.3E-12	9.9E-08	8.2E-09	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.3E-01	6.4E-04	4.5E-05	3.3E-01	2.8E-04	2.0E-04	2.2E-03	3.4E-04	-5.6E-01
EP	Eutrophication potential	kg N-Eq.	2.2E-01	3.6E-05	6.6E-04	2.2E-01	3.8E-06	1.1E-05	1.2E-03	1.0E-03	-2.9E-01
SP	Smog formation potential	kg O₃-Eq.	3.1E+00	1.7E-02	1.2E-03	3.1E+00	1.9E-03	5.5E-03	3.5E-02	7.3E-03	-4.7E+00
FFD	Fossil Fuel Depletion	MJ-surplus	3.4E+01	2.0E-01	1.5E-02	3.5E+01	2.8E-02	6.5E-02	4.6E-01	8.3E-02	-3.9E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 lı	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.5E+01	1.1E-01	1.3E-02	5.1E+01	3.3E-02	3.4E-02	5.1E+00	1.2E-01	-6.8E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.4E-06	4.0E-12	3.5E-10	1.5E-06	5.3E-13	1.3E-12	9.9E-08	8.2E-09	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.4E-01	5.3E-04	3.7E-05	3.4E-01	2.8E-04	2.0E-04	2.2E-03	3.4E-04	-5.6E-01
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	1.0E-01	9.3E-05	2.4E-04	1.1E-01	3.8E-06	1.1E-05	1.2E-03	1.0E-03	-2.9E-01
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.8E-02	2.4E-05	2.9E-06	6.6E-02	1.9E-03	5.5E-03	3.5E-02	7.3E-03	-4.7E+00
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	7.2E-05	0.0E+00	4.8E-09	6.1E-01	2.8E-02	6.5E-02	4.6E-01	8.3E-02	-3.9E+01
ADPF	Abiotic depletion potential for fossil resources	MJ	5.1E+02	1.4E+00	1.0E-01	5.1E+02	3.3E-02	3.4E-02	5.1E+00	1.2E-01	-6.9E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

esource l	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	2.7E+01	0.0E+00	5.6E-04	2.7E+01	0.0E+00	0.0E+00	4.1E-01	3.2E-02	-9.9E+00
RPR_M	Renewable primary energy resources as material utilization	MJ	7.1E+00	0.0E+00	3.5E-01	7.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	4.6E+02	1.4E+00	1.0E-01	4.7E+02	4.6E-01	4.4E-01	4.3E+00	7.8E-01	-7.5E+02
$NRPR_M$	Nonrenewable primary energy as material utilization	MJ	9.2E+01	0.0E+00	4.6E+00	9.7E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-7.6E+02							
FW	Use of net fresh water	m ³	1.4E-01	0.0E+00	2.2E-05	2.8E-01	0.0E+00	0.0E+00	1.4E-01	4.0E-04	-1.2E-01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flow	s and Waste Categories	3									
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	6.5E-05	0.0E+00	3.3E-06	6.8E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	5.8E-02	0.0E+00	1.4E-01	4.4E-01	0.0E+00	0.0E+00	0.0E+00	2.4E-01	0.0E+00
HLRW	High-level radioactive waste	kg	1.4E-01	0.0E+00	2.2E-05	1.4E-01	0.0E+00	0.0E+00	2.0E-05	3.7E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	1.9E-01	0.0E+00	4.2E-01	2.0E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	3.4E-02	2.1E+00	0.0E+00	0.0E+00	2.1E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	4.0E+01	0.0E+00	0.0E+00	4.0E+01	0.0E+00	0.0E+00

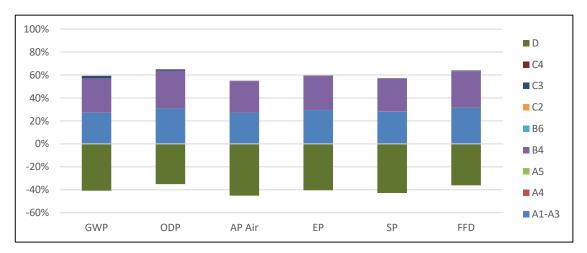
^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource Use Parameter Unit A1-A3 A4 A5 B4 B6 C2 C3 C4 D													
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D		
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00										
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00										
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.2E-01	0.0E+00	0.0E+00	1.2E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	1.2E-01	1.2E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00										
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00										
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00										
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO₂	0.0E+00										

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable



According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Interpretation - 63353501 (4/40)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

LCA Results - 63357301 (4/13.5)

Results shown below were calculated using TRACI 2.1 Methodology.

RACI 2.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.8E+01	1.3E-01	1.4E-02	5.5E+01	3.3E-02	4.1E-02	6.8E+00	1.6E-01	-7.3E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	2.1E-06	4.9E-12	5.6E-10	2.2E-06	5.3E-13	1.6E-12	1.3E-07	1.1E-08	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.4E-01	7.7E-04	5.5E-05	3.4E-01	2.8E-04	2.5E-04	3.0E-03	4.6E-04	-6.0E-01
EP	Eutrophication potential	kg N-Eq.	2.3E-01	4.3E-05	8.0E-04	2.3E-01	3.8E-06	1.4E-05	1.5E-03	1.4E-03	-2.9E-01
SP	Smog formation potential	kg O ₃ -Eq.	3.2E+00	2.1E-02	1.5E-03	3.3E+00	1.9E-03	6.7E-03	4.7E-02	9.7E-03	-4.9E+00
FFD	Fossil Fuel Depletion	MJ-surplus	4.2E+01	2.5E-01	1.8E-02	4.3E+01	2.8E-02	7.9E-02	6.2E-01	1.1E-01	-4.7E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	В4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.8E+01	1.3E-01	1.6E-02	5.5E+01	3.3E-02	4.1E-02	6.8E+00	1.6E-01	-7.3E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.5E-06	4.9E-12	4.2E-10	1.7E-06	5.3E-13	1.6E-12	1.3E-07	1.1E-08	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO₂-Eq.	3.5E-01	6.4E-04	4.5E-05	3.5E-01	2.8E-04	2.5E-04	3.0E-03	4.6E-04	-6.0E-01
EP	Eutrophication potential	kg(PO₄)³-Eq.	1.1E-01	1.1E-04	2.9E-04	1.1E-01	3.8E-06	1.4E-05	1.5E-03	1.4E-03	-2.9E-01
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.8E-02	2.9E-05	3.5E-06	8.2E-02	1.9E-03	6.7E-03	4.7E-02	9.7E-03	-4.9E+00
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	8.5E-05	0.0E+00	5.8E-09	8.1E-01	2.8E-02	7.9E-02	6.2E-01	1.1E-01	-4.7E+01
ADPF	Abiotic depletion potential for fossil resources	MJ	5.6E+02	1.7E+00	1.2E-01	5.7E+02	3.3E-02	4.1E-02	6.8E+00	1.6E-01	-7.3E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Parameter Parameter Unit A1-A3 A4 A5 B4 B6 C2 C3 C4 D													
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D		
RPR _E	Renewable primary energy as energy carrier	MJ	3.2E+01	0.0E+00	6.8E-04	3.2E+01	0.0E+00	0.0E+00	5.5E-01	4.3E-02	-9.9E+00		
RPR_M	Renewable primary energy resources as material utilization	MJ	8.6E+00	0.0E+00	4.3E-01	9.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	4.9E+02	1.7E+00	1.3E-01	5.0E+02	4.6E-01	5.3E-01	5.8E+00	1.0E+00	-8.2E+02		
$NRPR_M$	Nonrenewable primary energy as material utilization	MJ	1.3E+02	0.0E+00	6.3E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00		
SM	Use of secondary material	kg	0.0E+00										
RSF	Use of renewable secondary fuels	MJ	0.0E+00										
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00										
RE	Energy recovered from disposed waste	MJ	0.0E+00	-8.3E+02									
FW	Use of net fresh water	m ³	1.6E-01	0.0E+00	2.6E-05	3.5E-01	0.0E+00	0.0E+00	1.8E-01	5.4E-04	-1.2E-01		

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flow	s and Waste Categories	3									
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	7.9E-05	0.0E+00	4.0E-06	8.3E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	7.0E-02	0.0E+00	1.7E-01	4.8E-01	0.0E+00	0.0E+00	0.0E+00	2.4E-01	0.0E+00
HLRW	High-level radioactive waste	kg	1.6E-01	0.0E+00	2.6E-05	1.6E-01	0.0E+00	0.0E+00	2.7E-05	5.0E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	2.3E-01	0.0E+00	5.1E-01	2.1E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	4.2E-02	2.9E+00	0.0E+00	0.0E+00	2.8E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	5.6E+01	0.0E+00	0.0E+00	5.6E+01	0.0E+00	0.0E+00

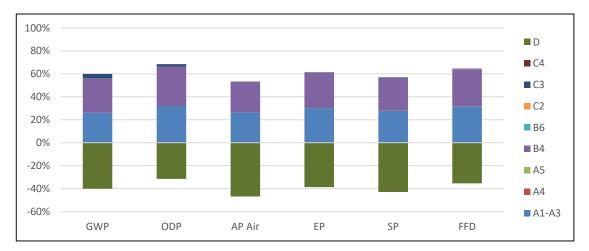
^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource L	lse			•					•	•	
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.4E-01	0.0E+00	0.0E+00	1.4E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	1.4E-01	1.4E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.0E+00								

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable



According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Interpretation - 63357301 (4/13.5)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

LCA Results - 63364201 (4/13.5)

Results shown below were calculated using TRACI 2.1 Methodology.

RACI 2.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.8E+01	1.3E-01	1.4E-02	5.5E+01	3.3E-02	4.1E-02	6.9E+00	1.6E-01	-7.3E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	2.1E-06	5.0E-12	5.7E-10	2.2E-06	5.3E-13	1.6E-12	1.3E-07	1.1E-08	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO₂-Eq.	3.4E-01	7.8E-04	5.5E-05	3.4E-01	2.8E-04	2.5E-04	3.0E-03	4.6E-04	-6.0E-01
EP	Eutrophication potential	kg N-Eq.	2.3E-01	4.3E-05	8.0E-04	2.3E-01	3.8E-06	1.4E-05	1.6E-03	1.4E-03	-2.9E-01
SP	Smog formation potential	kg O₃-Eq.	3.2E+00	2.1E-02	1.5E-03	3.3E+00	1.9E-03	6.8E-03	4.8E-02	9.8E-03	-4.9E+00
FFD	Fossil Fuel Depletion	MJ-surplus	4.2E+01	2.5E-01	1.8E-02	4.3E+01	2.8E-02	7.9E-02	6.2E-01	1.1E-01	-4.7E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	4.8E+01	1.3E-01	1.6E-02	5.5E+01	3.3E-02	4.1E-02	6.9E+00	1.6E-01	-7.3E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.5E-06	4.9E-12	4.3E-10	1.7E-06	5.3E-13	1.6E-12	1.3E-07	1.1E-08	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO₂-Eq.	3.5E-01	6.4E-04	4.6E-05	3.5E-01	2.8E-04	2.5E-04	3.0E-03	4.6E-04	-6.0E-01
EP	Eutrophication potential	kg(PO₄)³-Eq.	1.1E-01	1.1E-04	2.9E-04	1.1E-01	3.8E-06	1.4E-05	1.6E-03	1.4E-03	-2.9E-01
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.8E-02	3.0E-05	3.5E-06	8.3E-02	1.9E-03	6.8E-03	4.8E-02	9.8E-03	-4.9E+00
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	8.6E-05	0.0E+00	5.9E-09	8.1E-01	2.8E-02	7.9E-02	6.2E-01	1.1E-01	-4.7E+01
ADPF	Abiotic depletion potential for fossil resources	MJ	5.6E+02	1.7E+00	1.2E-01	5.7E+02	3.3E-02	4.1E-02	6.9E+00	1.6E-01	-7.3E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

esource L	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	3.2E+01	0.0E+00	6.8E-04	3.2E+01	0.0E+00	0.0E+00	5.6E-01	4.4E-02	-9.9E+00
RPR _M	Renewable primary energy resources as material utilization	MJ	8.6E+00	0.0E+00	4.3E-01	9.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	4.9E+02	1.7E+00	1.3E-01	5.0E+02	4.6E-01	5.3E-01	5.8E+00	1.0E+00	-8.2E+02
NRPR _M	Nonrenewable primary energy as material utilization	MJ	1.3E+02	0.0E+00	6.4E+00	1.3E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-8.3E+02							
FW	Use of net fresh water	m ³	1.6E-01	0.0E+00	2.7E-05	3.5E-01	0.0E+00	0.0E+00	1.9E-01	5.4E-04	-1.2E-01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flow	s and Waste Categories										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	7.9E-05	0.0E+00	4.0E-06	8.3E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	7.1E-02	0.0E+00	1.7E-01	4.8E-01	0.0E+00	0.0E+00	0.0E+00	2.4E-01	0.0E+00
HLRW	High-level radioactive waste	kg	1.6E-01	0.0E+00	2.7E-05	1.6E-01	0.0E+00	0.0E+00	2.7E-05	5.0E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	2.3E-01	0.0E+00	5.1E-01	2.1E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	4.2E-02	2.9E+00	0.0E+00	0.0E+00	2.9E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	5.6E+01	0.0E+00	0.0E+00	5.6E+01	0.0E+00	0.0E+00

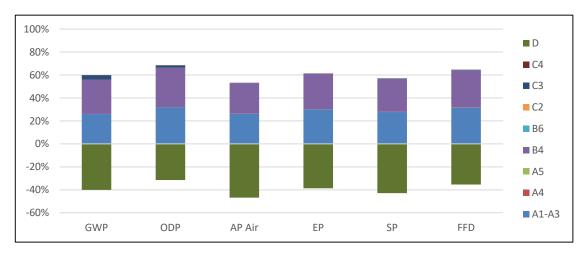
^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Resource l	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.4E-01	0.0E+00	0.0E+00	1.4E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	1.4E-01	1.4E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO₂	0.0E+00								

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable



According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Interpretation - 63364201 (4/13.5)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

LCA Results - 63376099 (4/11)

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Ir	npact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	5.0E+01	1.5E-01	1.6E-02	5.8E+01	3.3E-02	4.7E-02	8.1E+00	1.9E-01	-7.7E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	2.2E-06	5.6E-12	6.4E-10	2.3E-06	5.3E-13	1.8E-12	1.6E-07	1.3E-08	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.5E-01	8.8E-04	6.2E-05	3.5E-01	2.8E-04	2.8E-04	3.6E-03	5.5E-04	-6.3E-01
EP	Eutrophication potential	kg N-Eq.	2.3E-01	4.9E-05	9.0E-04	2.4E-01	3.8E-06	1.6E-05	1.8E-03	1.7E-03	-2.9E-01
SP	Smog formation potential	kg O ₃ -Eq.	3.3E+00	2.4E-02	1.7E-03	3.4E+00	1.9E-03	7.6E-03	5.6E-02	1.2E-02	-5.1E+00
FFD	Fossil Fuel Depletion	MJ-surplus	4.7E+01	2.8E-01	2.1E-02	4.8E+01	2.8E-02	8.9E-02	7.4E-01	1.3E-01	-5.2E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	5.0E+01	1.5E-01	1.8E-02	5.8E+01	3.3E-02	4.7E-02	8.1E+00	1.9E-01	-7.7E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.6E-06	5.6E-12	4.8E-10	1.8E-06	5.3E-13	1.8E-12	1.6E-07	1.3E-08	-2.0E-06
AP Air	Acidification potential for air emissions	kg SO₂-Eq.	3.5E-01	7.2E-04	5.1E-05	3.6E-01	2.8E-04	2.8E-04	3.6E-03	5.5E-04	-6.3E-01
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	1.1E-01	1.3E-04	3.3E-04	1.1E-01	3.8E-06	1.6E-05	1.8E-03	1.7E-03	-2.9E-01
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.9E-02	3.3E-05	4.0E-06	9.5E-02	1.9E-03	7.6E-03	5.6E-02	1.2E-02	-5.1E+00
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	9.5E-05	0.0E+00	6.6E-09	9.6E-01	2.8E-02	8.9E-02	7.4E-01	1.3E-01	-5.2E+01
ADPF	Abiotic depletion potential for fossil resources	MJ	6.0E+02	1.9E+00	1.4E-01	6.1E+02	3.3E-02	4.7E-02	8.1E+00	1.9E-01	-7.7E+01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

esource l	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	3.5E+01	0.0E+00	7.7E-04	3.6E+01	0.0E+00	0.0E+00	6.6E-01	5.2E-02	-9.9E+00
RPR _M	Renewable primary energy resources as material utilization	MJ	9.7E+00	0.0E+00	4.9E-01	1.0E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	5.1E+02	1.9E+00	1.4E-01	5.2E+02	4.6E-01	6.0E-01	6.9E+00	1.2E+00	-8.7E+02
NRPR _M	Nonrenewable primary energy as material utilization	MJ	1.5E+02	0.0E+00	7.6E+00	1.6E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-8.8E+02							
FW	Use of net fresh water	m^3	1.8E-01	0.0E+00	3.0E-05	4.0E-01	0.0E+00	0.0E+00	2.2E-01	6.4E-04	-1.2E-01

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flows	utput Flows and Waste Categories										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	8.9E-05	0.0E+00	4.5E-06	9.4E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	8.0E-02	0.0E+00	1.9E-01	5.1E-01	0.0E+00	0.0E+00	0.0E+00	2.4E-01	0.0E+00
HLRW	High-level radioactive waste	kg	1.8E-01	0.0E+00	3.0E-05	1.8E-01	0.0E+00	0.0E+00	3.3E-05	6.0E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	2.6E-01	0.0E+00	5.8E-01	2.2E+00	0.0E+00	0.0E+00	1.4E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	4.7E-02	3.5E+00	0.0E+00	0.0E+00	3.4E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00	6.7E+01	0.0E+00	0.0E+00

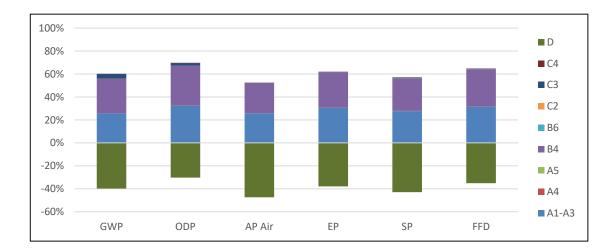
^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

esource l	Jse			•		•			•		
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	В6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO₂	0.0E+00	0.0E+0							
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00	0.0E+0							
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.6E-01	0.0E+00	0.0E+00	1.6E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	1.6E-01	1.6E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+0
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00	0.0E+0							
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00	0.0E+0							
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00	0.0E+0							
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.0E+00	0.0E+0							

^{*}All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable



According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Interpretation - 63376099 (4/11)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Additional Environmental Information

Environmental and Health During Manufacturing

At Southwire, we nurture the culture of a "Southwire family" and we work each day to enhance the lives of our employees by building a workplace that is diverse, supportive and engaging. Safety and health are top priorities, and we will always treat each other with dignity and respect. Southwire is committed to operating its facilities in compliance with applicable local, state/provincial, and federal environmental, health and safety (EHS) regulations, as well as implementing more stringent internal standards when necessary to protect our environment, our employees, and the general public. We are dedicated to prevent, reduce or eliminate pollution and health and safety risks at the source and are committed to continual improvement of our management systems to enhance performance, engage employees, and work toward a culture of zero incidents. Southwire recognizes the universal need for care and protection of our natural resources. In addition, Southwire acknowledges that our greatest asset is our people, and we seek to create a workplace where employee safety and health are always top priority.

Environmental and Health During Installation

There is no harmful emissive potential. No damage to health or impairment is expected under normal use corresponding to the intended use of the product.

Extraordinary Effects

Fire

Cable is specified for use up to 60C and complies with EN50575 EuroClass performance such as Dca, s2, d2, a1 or the IEC 60332-1 flammability test.

Water

None.

Mechanical Destruction

None.

Delayed Emissions

Global warming potential is calculated using the TRACI 2.1 and CML 4.1 impact assessment methodologies. Delayed emissions are not considered.

Environmental Activities and Certifications

Southwire monitors and changes processes and/or raw materials, where feasible, to reduce the volume and toxicity of waste generated. Wastes that are unavoidably generated are managed in accordance with regulatory agency-approved methods, and we recycle and reuse waste materials to the greatest extent feasible. Healthy air is vital to the well-being of the Southwire employees, the general public, and the environment. Through a variety of control technologies and operational measures, Southwire strives to minimize our pollutant emissions from our activities. In addition, we have established voluntary targets to reduce some of our air emissions beyond regulatory requirements. Southwire recognizes that water is an essential natural resource that is critical to our communities, the environment, and our business operations. We conserve water by minimizing the water consumption intensity associated with our operations and activities. We also seek to reduce or eliminate wastewaters from our processes where feasible and maintain the quality of our wastewater discharges within applicable regulatory limits. Southwire has achieved ISO 14001 certification at several of our manufacturing facilities.

Further Information

Southwire Company One Southwire Drive Carrollton, GA 30119 USA

Southwire SIMpull® Cable-In-Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

References

- 1	PCR Part A	The Norwegian EPD Foundation: NPCR Part A: Construction Products and Services, v1.0, 2017.
- 1	PCR Part B	The Norwegian EPD Foundation: NPCR 027 Part B: Electrical Cables and Wires, v1.0, October 2020.
	Secondary PCR Part A	PEP ecopassport Program: Product Category Rules for Electrical, Electronic and HVAC-R Products, v3.0, April 2015.
	Secondary PCR Part B	PEP ecopassport Program: Product Specific Rules for Wores, Cables and Accessories, v3.0, October 2015.
- :	SimaPro v9.2	PRe Sustainability. SimaPro Life Cycle Assessment version 9.2 (software).
-	ISO 14025	ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.
- 1	ISO 14040	ISO 14040:2009-11, Environmental management — Life cycle assessment — Principles and framework.
-	ISO 14044	ISO 14044:2006-10, Environmental management — Life cycle assessment — Requirements and guidelines.
- 1	EN 15804	EN 15804:2012-04: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction product
- 1	ULE 2020	UL Environment, General Program Instructions, v2.5, March 2020.
- 1	ISO 21930: 2017	ISO 21930:2017, Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products and services.
	Characterization Method	IPCC. 2014. Climate Change 2013. The Physical Science Basis. Cambridge University Press. (http://www.ipcc.ch/report/ar5/wg1/).
	Characterization Method	Hauschild M.Z., & Wenzel H. Environmental Assessment of Products. Springer, US, Vol. 2, 1998.
	Characterization Method	Heijungs R., Guinée J.B., Huppes G., Lankreijer R.M., Udo de Haes H.A., Wegener Sleeswijk A. Environmental Life Cycle Assessment of Products: Guide and Backgrounds. CML. Leiden University, Leiden, 1992.
	Characterization Method	Jenkin M.E., & Hayman G.D. Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters. Atmospheric Environment. 1999, 33 (8) pp. 1275-1293.
	Characterization Method	WMO. 1999. Scientific Assessment of Ozone Depletion: 1998, World Meteorological Organization Global Ozone Research and Monitoring Project - Report No. 44, WMO, Geneva.
	Characterization Method	Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources using Environmental Chambers- version 1.2, January 2017.
-	IEC 60228:2004	Conductors of Insulated Cables

Southwire SIMpull® Cable-In-Conduit

Energy Distribution Networks Cable

According to ISO 14025, EN 15804, and ISO 21930:2017

Contact Information

Study Commissioner

Mark Rogers Sr. Product Stewardship Coordinator Southwire Company One Southwire Drive Carrollton, Georgia 30119 Tel: (770) 832-5359

Email: mark.rogers@southwire.com

LCA Practitioner

Sustainable Solutions Corporation 155 Railroad Plaza, Suite 203 Royersford, PA 19468 USA (+1) 610 569-1047 info@sustainablesolutionscorporation.com www.sustainablesolutionscorporation.com

