Environmental Product Declaration Southwire Flexible Metal Conduit

Southwire Company, LLC is one of North America's largest wire and cable producers. As a family business, Southwire proudly continues building on our commitment to environmental stewardship and corporate sustainability by prioritizing stakeholder expectations, and supporting the wellbeing of our communities and the environment in which we live. To help us meet this commitment, we organize our sustainability strategy around five core tenets: Growing Green, Living Well, Giving Back, Doing Right, and Building Worth.

Our five core tenets allow us to deepen our vision and commitments by strengthening and aligning our programs, goals, and governance. Driven by the highest standard of excellence, we appreciate the need for continued improvement and are proud that our results continue to build a stronger Southwire. The use of environmental product declarations is growing rapidly in the wire and cable market. Southwire is developing its product stewardship program to evaluate and reduce the impacts of our products and processes throughout the organization.

Southwire Liquidtight Flexible Metal Conduit

Southwire Flexible Metal Conduit Residential,Industrial,Tertiary Cable

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025, EN15804, and ISO 21930-2017. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

EPD PROGRAM AND PROGRAM OPERATOR NAME,	UL ENVIRONMENT		WWW.UL.COM		
ADDRESS, LOGO, AND WEBSITE GENERAL PROGRAM INSTRUCTIONS AND	333 Pfingsten Rd, Northbrook	a, IL 60062	WWW.SPOT.UL.COM		
VERSION NUMBER	Program Operator Rules v	2.7 2022			
MANUFACTURER NAME AND ADDRESS	Southwire Company				
	One Southwire Drive Car	rollton, GA 30119			
DECLARATION NUMBER	4790297660.129.1	-			
DECLARED PRODUCT & FUNCTIONAL UNIT OF	Southwire Flexible Metal				
DECLARED UNIT		of installed cable over a 60 yea	-		
	ů.	ndation: NPCR Part A: Construc	ction Products and		
REFERENCE PCR AND VERSION NUMBER	Services, v1.0, 2017.	ndetien, NDCD 007 Dent D. Elec	trical Cables and Mires		
	v1.0. October 2020.	ndation: NPCR 027 Part B: Elec	cirical Cables and wires,		
		are primarily used in commerci	al residential industrial		
DESCRIPTION OF PRODUCT APPLICATION/USE	utility, and institutional se				
PRODUCT RSL DESCRIPTION	30 Years	0			
MARKETS OF APPLICABILITY	North America				
DATE OF ISSUE	December 1, 2022				
PERIOD OF VALIDITY	5 Years				
EPD TYPE	Product Specific				
DATASET VARIABILITY	N/A				
EPD SCOPE	Cradle-to-Grave				
YEAR(S) OF REPORTED PRIMARY DATA	2020				
LCA SOFTWARE & VERSION NUMBER	SimaPro v9.2				
LCI DATABASE(S) & VERSION NUMBER	Ecoinvent v3.5 & USLCI	l v2.0			
LCIA METHODOLOGY & VERSION NUMBER	TRACI 2.1; CML 4.1				
The sub-category PCR review was conducted by:		UL Environment - PCR Review	Panel - epd@ul.com		
This declaration was independently verified in accordanc	e with ISO 14025: 2006.				
EN 15804 serves as the core PCR, with additional consid	derations from The				
Norwegian EPD Foundation: NPCR Part A: Construction			Caapa Mar		
v2.0, March 2021 and The Norwegian EPD Foundation:	NPCR 027 Part B:		Cooper McC		
Electrical Cables and Wires, v1.0, October 2020.					
	EXTERNAL	Cooper McCollum, UL Environn	nent		
This life cycle assessment was conducted in accordance	with ISO 14044 and the	Sustainable Solutions Corporati	on		
reference PCR by: This life cycle assessment was independently verified in	accordance with ISO				
14044 and the reference PCR by:		James Mellentine, Thrive ESG	Jane A. Mullect.		
Environmental declarations from different programs (ISO 14025) may not be compara		•	1		

Environmental declarations from different programs (ISO 14025) may not be comparable.

Comparison of the environmental performance using EPD information shall consider all relevant information modules over the full life cycle of the products within the building.

This PCR allows EPD comparability only when the same functional requirements between products are ensured and the requirements of ISO 21930:2017 §5.5 are met. It should be noted that different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared.

Southwire Flexible Metal Conduit

Residential,Industrial,Tertiary Cable

General Information

Description of Company/Organization

A leader in technology and innovation, Southwire Company, LLC is one of North America's largest wire and cable producers. Southwire and its subsidiaries manufacture building wire and cable, metal-clad cable, portable and electronic cord products, overhead and underground transmission and distribution wire and cable products, original equipment manufacturer (OEM) wire products and engineered products. In addition, Southwire supplies assembled products and components, contractor equipment and hand tools, and designs and manufactures systems that produce copper and aluminum rod.

Product Description

Alflex™ Type RWA Reduced Wall Aluminum Flexible Metal Conduit

This product is manufactured with a lightweight, high strength aluminum alloy. Metal strip is helically formed into continuously interlocked flexible metal conduit that can withstand impact and crushing forces.

Alflex™ Type SWA Standard Wall Aluminum Flexible Metal Conduit

This product is manufactured with a lightweight, high strength aluminum alloy. Metal strip is helically formed into continuously interlocked flexible metal conduit that can withstand impact and crushing forces

Data-Flex® Flexible Metal Conduit

This product is manufactured with a spiral wound strip of corrosion-resistant, hot-dipped galvanized steel with a heavy zinc coating.

Galflex® Type RWS Reduced Wall Steel Flexible Metal Conduit

This product is manufactured with a galvanized, corrosion resistant, high strength steel alloy. The metal strip is helically formed into a continuously interlocked flexible metal conduit that can withstand impact and crushing forces.

Slinky-Flex® Extra Flexible Metal Conduit

This product is manufactured with a spiral wound strip of corrosion-resistant, hot-dipped galvanized steel.

Titan®2 Type CB Liquidtight Flexible Metal Conduit

This product is manufactured with a spiral wound strip of heavy gauge, corrosion-resistant, hot-dipped galvanized steel. For 3/8" through 1-1/4" trade sizes, the core is constructed with a square locked steel strip with an integral copper-bonding strip enclosed within the steel convolutions. For 1-1/2" through 4" trade sizes, the core is constructed with a fully interlocked steel strip. A rugged, flame retardant, flexible blue PVC jacket is extruded over the steel core.Other jacket colors are available.

Titan®2 Type EF Extra-Flexible Liquidtight Metal Conduit

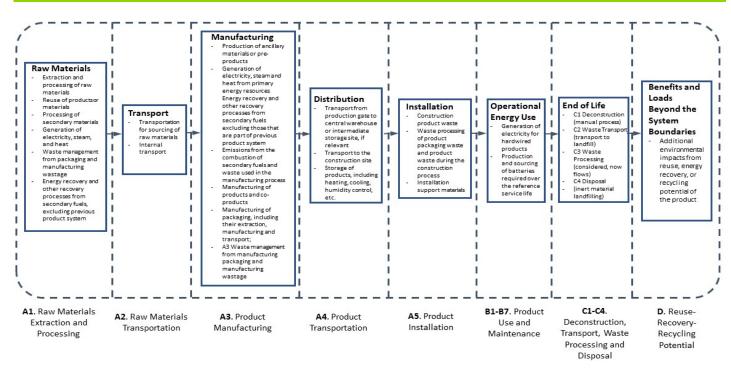
This product is manufactured with a spiral wound interlocked strip of corrosion-resistant, galvanized steel. A flame retardant, flexible PVC jacket is extruded over the metal core. The gray jacket resists oils, mild acids and exposure to sunlight.

Titan®2 Type HC Liquidtight Flexible Metal Conduit

This product is manufactured with a spiral wound strip of heavy gauge, corrosion-resistant, hot-dipped galvanized steel. For 3/8" through 1-1/4" trade sizes, the core is constructed with a square locked steel strip with an integral copper-bonding strip enclosed within the steel convolutions. A rugged, flame retardant, flexible PVC jacket is extruded over the steel core. The jacket provides protection from liquids, oil, certain chemicals, temperature, extreme weather and sunlight.

Ultratite® Type NM – Non-Metallic

This product is manufactured with rigid PVC reinforcement imbedded within a flexible PVC wall. The construction provides excellent impact and crush strength while remaining highly flexible. The conduit resists oils, mild acids and exposure to sunlight.


This EPD includes results for the following products: 55106702 (4in), 55092005 (2.5in), 55093505 (3/4 in), 55094804 (2in), 55106301 (4in). 55107601 (4in). 55282609 (2in). 55287001 (1/2in). 55289202 (4in).

Southwire Flexible Metal Conduit

Residential,Industrial,Tertiary Cable

Flow Diagram

Southwire[®]

Manufacturer Specific EPD

An impact assessment was completed for each product listed within the EPD. Each product within the EPD is the largest product size currently available, meaning that the same product may be sold in smaller sizes, and for the specific product recipe with the corresponding number of conductors. Completing an impact assessment for the largest product size within each group ensures that the products with the highest mass per functional unit are represented in the EPD. If impacts for a product within a product group did not fall within the typically allowable variance of $\pm 10\%$, impacts for each product were reported in the EPD for clarity.

Environment

According to

ISO 14025, EN 15804, and ISO 21930:2017

Other

Total

0.00%

100.00%

Southwire Flexible Metal Conduit

Residential,Industrial,Tertiary Cable

Application

These products can be used as flexible metal raceway systems for electrical power, communication cables, motor leads, listed assemblies and wire fixtures and manufactured wiring systems.

Material Composition

The primary product components and/or materials must be indicated as a percentage mass to enable the user of the EPD to understand the composition of the product in delivery status.

The average composition of a Southwire Flexible Metal Conduit Residential, Industrial, Tertiary cable is as follows:

		Perce	entage in ma	ISS (%)	
Material	55106702 (4in)	55092005 (2.5in)	55093505 (3/4in)	55094804 (2in)	55106301 (4in)
Colorant	0.58%	0.00%	0.65%	0.00%	0.00%
Conductor	70.97%	100.00%	67.35%	0.00%	100.00%
Cross Filler	0.00%	0.00%	0.00%	0.00%	0.00%
Drain Wire	0.00%	0.00%	0.00%	0.00%	0.00%
Insulation	0.00%	0.00%	0.00%	0.00%	0.00%
Jacketing	28.45%	0.00%	32.00%	100.00%	0.00%
Rip Cord	0.00%	0.00%	0.00%	0.00%	0.00%
Таре	0.00%	0.00%	0.00%	0.00%	0.00%
Other	0.00%	0.00%	0.00%	0.00%	0.00%
Total	100.00%	100.00%	100.00%	100.00%	100.00%
		Percentage	in mass (%)	• •	
Material	55107601 (4in)	55282609 (2in)	55287001 (1/2in)	55289202 (4in)	
Colorant	1.17%	0.00%	0.00%	0.87%	
Conductor	60.85%	100.00%	100.00%	70.97%	
Cross Filler	0.00%	0.00%	0.00%	0.00%	
Drain Wire	0.00%	0.00%	0.00%	0.00%	
Insulation	0.00%	0.00%	0.00%	0.00%	
Jacketing	37.97%	0.00%	0.00%	28.16%	
Rip Cord	0.00%	0.00%	0.00%	0.00%	
Таре	0.00%	0.00%	0.00%	0.00%	
- ···					1

0.00%

100.00%

0.00%

100.00%

0.00%

100.00%

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

Placing on the Market / Application Rules

NFPA 70 (National Electrical Code), Article 348 - Type FMC (flexible metal conduit) NFPA-70 (National Electrical Code), Article 350 - Liquidtight Flexible Metal Conduit NEC® Type designation - Type LFNC-B (Liquidtight Flexible Nonmetallic Conduit) ANSI / NFPA-70, NEC® Article 356 UL Listed to Underwriters Laboratories Standard ANSI / UL-360 for Liquidtight Flexible Steel Conduit UL Listed per UL 1, Standard for Safety for Flexible Metal Conduit, ANSI/UL-1 UL Listed to Underwriters Laboratories Standard UL 1660 CSA Listed per CSA 22.2 No. 56 per Canadian Electrical Code C22.1 Section 12-1000 CSA Listed to CSA 22.2 No.56 for use per the Canadian Electrical Code C22.1 Section 12-1300 Meets federal specification WW-C-566C

Properties of Declared Product as Shipped

Southwire Flexible Metal Conduit Residential, Industrial, Tertiary cables are delivered as a complete unit, inclusive of all installation materials and instructions.

Methodological Framework

Functional Unit

The declaration refers to the functional unit of 1 meter of installed cable as specified in the PCR.

Declared uni	t		1 meter of installe	ed cable
Product Number	Gauge Size	Number of Conductors	Weight (kg/m)	Conversion factor to 1 kg
55106702	4 in	-	4.61	0.22
55092005	2.5 in	-	2.23	0.45
55093505	3/4 in	-	0.61	1.64
55094804	2 in	-	0.92	1.08
55106301	4 in	-	1.13	0.88
55107601	4 in	-	3.50	0.29
55282609	2 in	-	1.12	0.89
55287001	1/2 in	-	0.24	4.20
55289202	4 in	-	4.61	0.22

Southwire[®]

System Boundary

This is a cradle to grave Environmental Product Declaration. The following life cycle phases were considered:

Product Stage			truction ss Stage	Use Stage					En	d of L	ife Sta	ge*	Benefits and Loads Beyond the System Boundaries			
Raw material supply	Transport	Manufacturing	Transport from gate to the site	Construction/ installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction /demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х

Description of the System Boundary Stages Corresponding to the PCR

(X = Included; MND = Module Not Declared)

*This includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues.

Environment

According to ISO 14025, EN 15804, and ISO 21930:2017

Reference Service Life

The reference service life of a properly installed Southwire Flexible Metal Conduit Residential, Industrial, Tertiary cable is 30 years. The building estimated service life is 60 years.

Allocation

Allocation was determined on a per meter basis.

Cut-off Criteria

Processes whose total contribution to the final result, with respect to their mass and in relation to all considered impact categories, is less than 1% can be neglected. The sum of the neglected processes may not exceed 5% by mass of the considered impact categories. For that a documented assumption is admissible.

For Hazardous Substances the following requirements apply:

- The Life Cycle Inventory (LCI) of hazardous substances will be included, if the inventory is available.
- If the LCI for a hazardous substance is not available, the substance will appear as an input in the LCI of the product, if its mass represents more than 0.1% of the product composition.
- If the LCI of a hazardous substance is approximated by modeling another substance, documentation will be provided.

This EPD is in compliance with the cut-off criteria. No processes were neglected or excluded unless specifically stated in the EPD. Capital items for the production processes (machine, buildings, etc.) were not taken into consideration.

Data Sources

Primary data were collected for every process in the product system under the control of Southwire. Secondary data from the ecoinvent database were utilized when necessary. These data were evaluated and have temporal, geographic, and technical coverage appropriate to the scope of the product category.

Data Quality

The data sources used are complete and representative of North American systems in terms of the geographic and technological coverage and are a recent vintage (i.e. less than ten years old). The data used for primary data are based on direct information sources of the manufacturers. Secondary data sets were used for raw materials extraction and processing, end of life, transportation, and energy production flows. Wherever secondary data is used, the study adopts critically reviewed data for consistency, precision, and reproducibility to limit uncertainty.

Period Under Review

The period under review is the full calendar year of 2020.

Treatment of Biogenic Carbon

The uptake and release of biogenic carbon throughout the product life cycle follows ISO 21930:2017 Section 7.2.7.

Comparability and Benchmarking

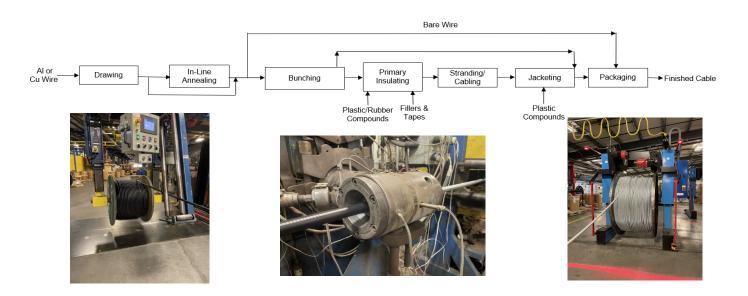
A comparison or an evaluation of EPD data is only possible if all data sets to be compared were created according to EN 15804 and the building context, respectively the product-specific characteristics of performance, are taken into account. Environmental declarations from different programs may not be comparable. Full conformance with the PCR allows for EPD comparability only when all stages a product's life cycle have been considered. However, variations and deviations are possible.

Units

The LCA results within this EPD are reported in SI units.

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable


Additional Environmental Information

Background data

For life cycle modeling of the considered products, the SimaPro v9.2 Software System for Life Cycle Engineering, developed by PRe Sustainability, is used. The ecoinvent database contains consistent and documented datasets which are documented online. To ensure comparability of results in the LCA, the basic data of the ecoinvent database were used for energy, transportation, and auxiliary materials.

Manufacturing

All wire and cable products in this study include a conductor. The conductor is made of some metal, primarily copper or aluminum, and is annealed and formed into strands by a drawing process. The conductors are bunched together, sometimes after having an insulating material applied in an extrusion process. Cables that are not bare cables include some sort of insulation and possibly a jacket. The cables that include jacketing go through jacket extrusion after the wires have been bunched.

Southwire Flexible Metal Conduit

Residential,Industrial,Tertiary Cable

Packaging

All packaging is fully recyclable. The packaging material is composed primarily of wood, with cardboard and plastic materials used for individual product packaging. Packaging can vary based on final product size and length. The percent breakdown of packaging is based on manufacturing facilities but actual amounts will be based on the product's final weight or density.

Southwire[®]

Material	Quantity (% By Weight)
Cardboard	0.00%
Other	0.13%
Plastic	0.05%
Wood	99.82%
Total	100.00%

Transformation

Transport to Building Site (A4)							
Name	Value	Unit					
Fuel type		Diesel					
Liters of fuel	38	l/100km					
Transport distance	300	km					
Capacity utilization (including empty runs)	-	%					
Gross density of products transported	-	kg/m ³					
Weight of products transported	-	kg					
Volume of products transported	-	m ³					
Capacity utilization volume factor	0.9	-					

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

Product Installation

Southwire Flexible Metal Conduit Residential, Industrial, Tertiary cables are distributed through and installed by trained installation technicians adhering to local/national standards and requirements. Installation accounts for the energy consumption, material wastage, and support materials use during the installation process, as well as waste treatment of packaging materials. The installation scrap was assumed to be a 5% average in accordance with the PCR. Installation is typically completed using battery-powered equipment, but this is below the cut-off criteria.

Southwire[®]

	Installation into the building (A5)											
Name	55106702 (4in)	55092005 (2.5in)	55093505 (3/4in)	55094804 (2in)	55106301 (4in)	55107601 (4in)	Unit					
Auxiliary materials	-	-	-	-	-	-	kg					
Water consumption	-	-	-	-	-	-	m ³					
Other resources	-	-	-	-	-	-	kg					
Electricity consumption	-	-	-	-	-	-	kWh					
Other energy carriers	-	-	-	-	-	-	MJ					
Product loss per functional unit	0.231	0.112	0.031	0.046	0.057	0.175	kg					
Waste materials at construction site	0.231	0.112	0.031	0.046	0.057	0.175	kg					
Output substance (recycle)	0.000	0.000	0.003	0.000	0.048	0.000	kg					
Output substance (landfill)	0.000	0.000	0.001	0.000	0.008	0.000	kg					
Output substance (incineration)	0.231	0.112	0.027	0.046	0.000	0.175	kg					
Packaging waste (recycle)	2.159	1.045	0.286	0.432	0.529	1.637	kg					
Packaging waste (landfill)	0.577	0.279	0.076	0.115	0.141	0.437	kg					
Packaging waste (incineration)	0.144	0.070	0.019	0.029	0.035	0.109	kg					
Direct emissions to ambient air*, soil, and water	0.747	0.362	0.099	0.149	0.183	0.567	kg CO ₂					
VOC emissions	-	-	-	-	-	-	kg					

*CO2 emissions to air from disposal of packaging

Installation into the building (A5)										
Name	55282609 (2in)	55287001 (1/2in)	55289202 (4in)	Unit						
Auxiliary materials	-	-	-	kg						
Water consumption	-	-	-	m ³						
Other resources	-	-	-	kg						
Electricity consumption	-	-	-	kWh						
Other energy carriers	-	-	-	MJ						
Product loss per functional unit	0.056	0.012	0.231	kg						
Waste materials at construction site	0.056	0.012	0.231	kg						
Output substance (recycle)	0.000	0.010	0.000	kg						
Output substance (landfill)	0.000	0.002	0.000	kg						
Output substance (incineration)	0.056	0.000	0.231	kg						
Packaging waste (recycle)	0.524	0.111	2.159	kg						
Packaging waste (landfill)	0.140	0.030	0.577	kg						
Packaging waste (incineration)	0.035	0.007	0.144	kg						
Direct emissions to ambient air*, soil, and water	0.181	0.039	0.747	kg CO ₂						
VOC emissions	-	-	-	kg						

*CO2 emissions to air from disposal of packaging

Reference Service Life								
Name	Value	Unit						
Reference Service Life	30	years						
Estimated Building Service Life	60	years						
Number of Replacements	1	number						

Environment

According to ISO 14025, EN 15804, and ISO 21930:2017

Southwire Flexible Metal Conduit

Residential,Industrial,Tertiary Cable

Product Use

No cleaning, maintenance, repair, or refurbishment is required.

Operational energy use was modeled as use phase losses determined by the IEC 61156-5 standard. The maximum loss values for each cable category are detailed in the table below and were used in the B6 stage.

Operational Energy Use (B6)											
Name	55106702 (4in)	55092005 (2.5in)	55093505 (3/4in)	55094804 (2in)	55106301 (4in)	55107601 (4in)	Unit				
Water consumption (from tap, to sewer)	-	-	-	-	-	-	m³				
Electricity consumption	0.013	0.013	0.094	0.013	0.013	0.013	kWh				
Other energy carriers	-	-	-	-	-	-	MJ				
Equipment output	-	-	-	-	-	-	kW				
Direct emissions to ambient air, soil, and water	-	-	-	-	-	-	kg				

Operational Energy Use (B6)										
Name	55282609 (2in)	55287001 (1/2in)	55289202 (4in)	Unit						
Water consumption (from tap, to sewer)	-	-	-	m³						
Electricity consumption	0.013	0.174	0.013	kWh						
Other energy carriers	-	-	-	MJ						
Equipment output	-	-	-	kW						
Direct emissions to ambient air, soil, and water	-	-	-	kg						

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

Disposal

The product can be mechanically dissembled to separate the different materials. 85% of the metals used are recyclable, the remining 15% of metals are sent to landfill. The remainder of components are disposed of through waste incineration with energy recovery, in accordance with the PCR.

Southwire[®]

0

	End of life (C1-C4)											
Name	55106702 (4in)	55092005 (2.5in)	55093505 (3/4in)	55094804 (2in)	55106301 (4in)	Unit						
Collected separately	0.000	0.000	0.058	0.000	0.961	kg						
Collected as mixed construction waste	4.613	2.232	0.552	0.923	0.170	kg						
Reuse	0.000	0.000	0.000	0.000	0.000	kg						
Recycling	0.000	0.000	0.058	0.000	0.961	kg						
Landfilling	0.000	0.000	0.010	0.000	0.170	kg						
Incineration with energy recovery	4.613	2.232	0.541	0.923	0.000	kg						
Energy conversion	44.000	44.000	44.000	44.000	44.000	%						
Removals of biogenic carbon	-	-	-	-	-	kg						

	End of life	e (C1-C4)			
Name	55107601 (4in)	55282609 (2in)	55287001 (1/2in)	55289202 (4in)	Unit
Collected separately	0.000	0.000	0.202	0.000	kg
Collected as mixed construction waste	3.497	1.119	0.036	4.613	kg
Reuse	0.000	0.000	0.000	0.000	kg
Recycling	0.000	0.000	0.202	0.000	kg
Landfilling	0.000	0.000	0.036	0.000	kg
Incineration with energy recovery	3.497	1.119	0.000	4.613	kg
Energy conversion	44.000	44.000	44.000	44.000	%
Removals of biogenic carbon	-	-	-	-	kg

According to

ISO 14025, EN 15804, and ISO 21930:2017

Southwire Flexible Metal Conduit

Residential,Industrial,Tertiary Cable

Re-use Phase

Re-use of the product is not common due to the nature of hard-wiring the product into the building system.

Re-Use, reco	very, And/Or	Recycling Po	tential (D)			
Name	55106702 (4in)	55092005 (2.5in)	55093505 (3/4in)	55094804 (2in)	55106301 (4in)	Unit
Net energy benefit from energy recovery from waste treatment declared as exported energy in C3 (R>0.6)	11.22	0.01	1.67	7.72	0.01	MJ
Net energy benefit from thermal energy due to treatment of waste declared as exported energy in C4 (R<0.6)	0.00	0.00	0.00	0.00	0.00	MJ
Net energy benefit from material flow declared in C3 for energy recovery	0.00	0.00	0.00	0.00	0.00	MJ
Process and conversion efficiencies						
Further assumptions for scenario development (e.g. further processing technologies, assumptions on correction factors);						

Re-Use, recovery, A	nd/Or Recyc	ling Potential	(D)		
Name	55107601 (4in)	55282609 (2in)	55287001 (1/2in)	55289202 (4in)	Unit
Net energy benefit from energy recovery from waste treatment declared as exported energy in C3 (R>0.6)	11.47	0.01	0.001	11.22	MJ
Net energy benefit from thermal energy due to treatment of waste declared as exported energy in C4 (R<0.6)	0.00	0.00	0.00	0.00	MJ
Net energy benefit from material flow declared in C3 for energy recovery	0.00	0.00	0.00	0.00	MJ
Process and conversion efficiencies					
Further assumptions for scenario development (e.g. further processing technologies, assumptions on correction factors);					

Southwire Flexible Metal Conduit

Residential,Industrial,Tertiary Cable

LCA Results - 55106702 (4in)

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Ir	npact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	1.5E+01	1.3E-01	6.6E-02	1.9E+01	8.6E-03	4.3E-02	4.0E+00	9.4E-02	-1.3E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	3.3E-06	5.1E-12	2.1E-09	3.4E-06	1.4E-13	1.6E-12	7.9E-08	6.5E-09	-5.5E-07
AP Air	Acidification potential for air emissions	kg SO₂-Eq.	7.3E-02	8.0E-04	2.3E-04	7.6E-02	7.4E-05	2.6E-04	1.8E-03	2.7E-04	-6.2E-02
EP	Eutrophication potential	kg N-Eq.	9.8E-02	4.5E-05	4.2E-03	1.0E-01	1.0E-06	1.4E-05	9.1E-04	8.3E-04	-3.6E-02
SP	Smog formation potential	kg O ₃ -Eq.	1.0E+00	2.2E-02	6.2E-03	1.1E+00	4.9E-04	7.0E-03	2.8E-02	5.8E-03	-6.9E-01
FFD	Fossil Fuel Depletion	MJ-surplus	1.6E+01	2.6E-01	7.3E-02	1.7E+01	7.4E-03	8.2E-02	3.7E-01	6.6E-02	-9.6E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 Impact Assessment

Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	1.5E+01	1.4E-01	7.4E-02	1.9E+01	8.6E-03	4.3E-02	4.0E+00	9.4E-02	-1.3E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	3.1E-06	5.1E-12	1.6E-09	3.2E-06	1.4E-13	1.6E-12	7.9E-08	6.5E-09	-5.5E-07
AP Air	Acidification potential for air emissions	kg SO₂-Eq.	7.1E-02	6.6E-04	1.9E-04	7.4E-02	7.4E-05	2.6E-04	1.8E-03	2.7E-04	-6.2E-02
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	4.6E-02	1.2E-04	1.5E-03	4.9E-02	1.0E-06	1.4E-05	9.1E-04	8.3E-04	-3.6E-02
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	5.8E-03	3.1E-05	1.6E-05	4.7E-02	4.9E-04	7.0E-03	2.8E-02	5.8E-03	-6.9E-01
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	2.1E-03	0.0E+00	2.5E-08	5.2E-01	7.4E-03	8.2E-02	3.7E-01	6.6E-02	-9.6E+00
ADPF	Abiotic depletion potential for fossil resources	MJ	1.8E+02	1.7E+00	5.0E-01	1.9E+02	8.6E-03	4.3E-02	4.0E+00	9.4E-02	-1.3E+01

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the resource use throughout the life cycle of the product.

Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	1.0E+02	0.0E+00	3.0E-03	1.0E+02	0.0E+00	0.0E+00	3.3E-01	2.6E-02	-3.2E+00
RPR_{M}	Renewable primary energy resources as material utilization	MJ	4.6E+01	0.0E+00	2.3E+00	4.8E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	1.7E+02	1.7E+00	5.1E-01	1.8E+02	1.2E-01	5.5E-01	3.4E+00	6.2E-01	-1.5E+02
$NRPR_{M}$	Nonrenewable primary energy as material utilization	MJ	2.6E+01	0.0E+00	1.3E+00	2.7E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-1.5E+02							
FW	Use of net fresh water	m ³	1.2E-01	0.0E+00	1.2E-04	2.3E-01	0.0E+00	0.0E+00	1.1E-01	3.2E-04	-4.2E-02

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

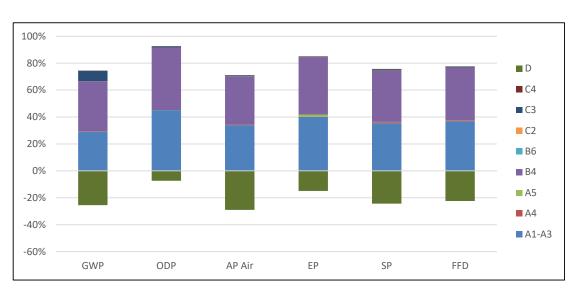
Results below contain the output flows and wastes throughout the life cycle of the product.

Ilput Flow	s and Waste Categories		1	1		1	-			-	
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	1.7E-04	0.0E+00	8.4E-06	1.8E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	1.8E-02	0.0E+00	5.8E-01	6.0E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HLRW	High-level radioactive waste	kg	1.2E-01	0.0E+00	1.2E-04	1.2E-01	0.0E+00	0.0E+00	1.6E-05	3.0E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	1.9E-01	0.0E+00	2.2E+00	2.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	1.4E-01	4.8E+00	0.0E+00	0.0E+00	4.6E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	1.1E+01	0.0E+00	0.0E+00	1.1E+01	0.0E+00	0.0E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	7.5E-01	0.0E+00	0.0E+00	7.5E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	7.5E-01	7.5E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.0E+00								


Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

LCA Interpretation - 55106702 (4in)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

Southwire[®]

According to

Southwire Flexible Metal Conduit

According to ISO 14025, EN 15804, and ISO 21930:2017

LCA Results - 55092005 (2.5in)

Residential, Industrial, Tertiary Cable

Results shown below were calculated using TRACI 2.1 Methodology.

Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	7.4E+00	6.5E-02	3.2E-02	8.3E+00	8.6E-03	2.1E-02	7.4E-01	1.7E-02	-6.6E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	5.3E-07	2.5E-12	1.0E-09	5.5E-07	1.4E-13	7.9E-13	1.4E-08	1.2E-09	-3.7E-07
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.7E-02	3.9E-04	1.1E-04	3.8E-02	7.4E-05	1.2E-04	3.2E-04	5.0E-05	-2.2E-02
EP	Eutrophication potential	kg N-Eq.	5.7E-02	2.2E-05	2.0E-03	5.9E-02	1.0E-06	6.9E-06	1.7E-04	1.5E-04	-2.5E-02
SP	Smog formation potential	kg O ₃ -Eq.	5.2E-01	1.1E-02	3.0E-03	5.5E-01	4.9E-04	3.4E-03	5.1E-03	1.1E-03	-3.5E-01
FFD	Fossil Fuel Depletion	MJ-surplus	5.5E+00	1.2E-01	3.5E-02	5.7E+00	7.4E-03	4.0E-02	6.7E-02	1.2E-02	-2.8E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 Ir	npact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	7.5E+00	6.5E-02	3.6E-02	8.4E+00	8.6E-03	2.1E-02	7.4E-01	1.7E-02	-6.6E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	4.2E-07	2.5E-12	7.8E-10	4.4E-07	1.4E-13	7.9E-13	1.4E-08	1.2E-09	-3.7E-07
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	3.6E-02	3.2E-04	9.1E-05	3.7E-02	7.4E-05	1.2E-04	3.2E-04	5.0E-05	-2.2E-02
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	2.6E-02	5.7E-05	7.5E-04	2.7E-02	1.0E-06	6.9E-06	1.7E-04	1.5E-04	-2.5E-02
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	3.2E-03	1.5E-05	7.9E-06	1.3E-02	4.9E-04	3.4E-03	5.1E-03	1.1E-03	-3.5E-01
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	1.4E-03	0.0E+00	1.2E-08	1.2E-01	7.4E-03	4.0E-02	6.7E-02	1.2E-02	-2.8E+00
ADPF	Abiotic depletion potential for fossil resources	MJ	7.9E+01	8.4E-01	2.4E-01	8.1E+01	8.6E-03	2.1E-02	7.4E-01	1.7E-02	-6.7E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the resource use throughout the life cycle of the product.

Resource L	lse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	5.0E+01	0.0E+00	1.5E-03	5.0E+01	0.0E+00	0.0E+00	6.0E-02	4.7E-03	-2.2E+00
RPR_{M}	Renewable primary energy resources as material utilization	MJ	2.2E+01	0.0E+00	1.1E+00	2.3E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	8.5E+01	8.4E-01	2.4E-01	8.7E+01	0.0E+00	2.7E-01	6.2E-01	1.1E-01	-6.7E+01
$NRPR_{M}$	Nonrenewable primary energy as material utilization	MJ	3.1E-02	0.0E+00	1.5E-03	3.2E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-6.9E+01							
FW	Use of net fresh water	m ³	5.7E-02	0.0E+00	5.7E-05	7.7E-02	0.0E+00	0.0E+00	2.0E-02	5.8E-05	-2.8E-02

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

😥 Southwire®

According to ISO 14025, EN 15804, and ISO 21930:2017

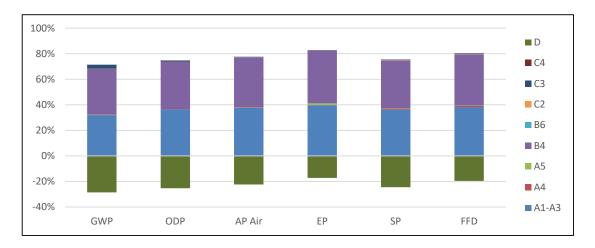
Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flow	s and Waste Categories										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	8.1E-05	0.0E+00	4.1E-06	8.5E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	8.6E-03	0.0E+00	2.8E-01	2.9E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HLRW	High-level radioactive waste	kg	5.7E-02	0.0E+00	5.7E-05	5.7E-02	0.0E+00	0.0E+00	2.9E-06	5.4E-07	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	9.4E-02	0.0E+00	1.0E+00	1.1E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	7.0E-02	2.3E+00	0.0E+00	0.0E+00	2.2E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	1.3E-02	0.0E+00	0.0E+00	1.3E-02	0.0E+00	0.0E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Resource L	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	3.6E-01	0.0E+00	0.0E+00	3.6E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	3.6E-01	3.6E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.0E+00								



Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

LCA Interpretation - 55092005 (3/4in)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

LCA Results - 55093505 (3/4in)

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Ir	npact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	2.3E+00	1.8E-02	8.7E-03	2.9E+00	6.2E-02	5.7E-03	5.8E-01	1.3E-02	-2.3E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	5.0E-07	6.8E-13	2.8E-10	5.2E-07	1.0E-12	2.2E-13	1.1E-08	9.3E-10	-1.1E-07
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	1.8E-02	1.1E-04	3.0E-05	1.9E-02	5.4E-04	3.4E-05	2.5E-04	3.9E-05	-2.3E-02
EP	Eutrophication potential	kg N-Eq.	7.6E-02	5.9E-06	5.6E-04	7.7E-02	7.3E-06	1.9E-06	1.3E-04	1.2E-04	-1.1E-01
SP	Smog formation potential	kg O ₃ -Eq.	3.3E-01	2.9E-03	8.2E-04	3.4E-01	3.6E-03	9.2E-04	4.0E-03	8.2E-04	-4.1E-01
FFD	Fossil Fuel Depletion	MJ-surplus	2.5E+00	3.4E-02	9.7E-03	2.7E+00	5.4E-02	1.1E-02	5.2E-02	9.4E-03	-2.0E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

CML 4.1 lr	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	2.3E+00	1.8E-02	9.8E-03	2.9E+00	6.2E-02	5.7E-03	5.8E-01	1.3E-02	-2.3E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	4.7E-07	6.7E-13	2.1E-10	4.8E-07	1.0E-12	2.2E-13	1.1E-08	9.3E-10	-1.1E-07
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	1.6E-02	8.8E-05	2.5E-05	1.7E-02	5.4E-04	3.4E-05	2.5E-04	3.9E-05	-2.3E-02
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	3.4E-02	1.6E-05	2.0E-04	3.4E-02	7.3E-06	1.9E-06	1.3E-04	1.2E-04	-1.1E-01
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	8.1E-04	4.0E-06	2.2E-06	6.6E-03	3.6E-03	9.2E-04	4.0E-03	8.2E-04	-4.1E-01
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	4.0E-04	0.0E+00	3.3E-09	7.3E-02	5.4E-02	1.1E-02	5.2E-02	9.4E-03	-2.0E+00
ADPF	Abiotic depletion potential for fossil resources	MJ	2.8E+01	2.3E-01	6.6E-02	2.9E+01	6.3E-02	5.7E-03	5.8E-01	1.3E-02	-2.3E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

Results below contain the resource use throughout the life cycle of the product.

Resource L	lse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	1.6E+01	0.0E+00	4.0E-04	1.6E+01	0.0E+00	0.0E+00	4.7E-02	3.7E-03	-4.1E+00
RPR_{M}	Renewable primary energy resources as material utilization	MJ	6.0E+00	0.0E+00	3.0E-01	6.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPRE	Nonrenewable primary energy as energy carrier	MJ	2.6E+01	2.3E-01	6.7E-02	2.7E+01	9.7E-04	7.3E-02	4.9E-01	8.8E-02	-2.6E+01
$NRPR_{M}$	Nonrenewable primary energy as material utilization	MJ	3.8E+00	0.0E+00	1.9E-01	4.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-3.1E+01							
FW	Use of net fresh water	m ³	1.9E-02	0.0E+00	1.6E-05	3.5E-02	0.0E+00	0.0E+00	1.6E-02	4.5E-05	-1.3E-02

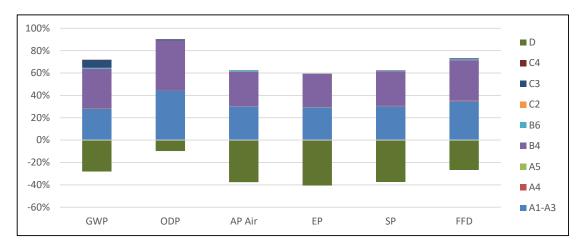
*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flow	s and Waste Categories	;									
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	2.2E-05	0.0E+00	1.1E-06	2.3E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	2.3E-03	0.0E+00	7.6E-02	8.9E-02	0.0E+00	0.0E+00	0.0E+00	1.0E-02	0.0E+00
HLRW	High-level radioactive waste	kg	1.9E-02	0.0E+00	1.6E-05	1.9E-02	0.0E+00	0.0E+00	2.3E-06	4.2E-07	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	2.6E-02	0.0E+00	2.9E-01	3.7E-01	0.0E+00	0.0E+00	5.8E-02	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	1.9E-02	5.6E-01	0.0E+00	0.0E+00	5.4E-01	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	1.7E+00	0.0E+00	0.0E+00	1.7E+00	0.0E+00	0.0E+00

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable


Results below contain direct	greennouse gas	emissions and	removais through	nout the life c	ycle of the product.

Resource U	lse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	9.9E-02	0.0E+00	0.0E+00	9.9E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	9.9E-02	9.9E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.0E+00								

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

LCA Interpretation - 55093505 (3/4in)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

Residential,Industrial,Tertiary Cable

LCA Results - 55094804 (2in)

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	2.4E+00	2.7E-02	1.3E-02	4.5E+00	8.6E-03	8.6E-03	2.0E+00	4.8E-02	-2.4E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.0E-06	1.0E-12	4.3E-10	1.1E-06	1.4E-13	3.3E-13	4.0E-08	3.3E-09	-2.6E-11
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	9.7E-03	1.6E-04	4.6E-05	1.1E-02	7.4E-05	5.1E-05	8.9E-04	1.4E-04	-2.1E-02
EP	Eutrophication potential	kg N-Eq.	7.4E-03	9.0E-06	8.5E-04	9.2E-03	1.0E-06	2.8E-06	4.6E-04	4.2E-04	-2.5E-04
SP	Smog formation potential	kg O ₃ -Eq.	1.3E-01	4.4E-03	1.2E-03	1.6E-01	4.9E-04	1.4E-03	1.4E-02	2.9E-03	-1.2E-01
FFD	Fossil Fuel Depletion	MJ-surplus	4.7E+00	5.2E-02	1.5E-02	5.0E+00	7.4E-03	1.6E-02	1.9E-01	3.3E-02	-3.8E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 Impact Assessment

1	npact Assessment										_
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	2.4E+00	2.7E-02	1.5E-02	4.5E+00	8.6E-03	8.6E-03	2.0E+00	4.8E-02	-2.4E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	9.7E-07	1.0E-12	3.2E-10	1.0E-06	1.4E-13	3.3E-13	4.0E-08	3.3E-09	-2.6E-11
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	9.4E-03	1.3E-04	3.8E-05	1.1E-02	7.4E-05	5.1E-05	8.9E-04	1.4E-04	-2.1E-02
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	3.7E-03	2.4E-05	3.1E-04	4.9E-03	1.0E-06	2.8E-06	4.6E-04	4.2E-04	-2.5E-04
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	5.4E-04	6.1E-06	3.3E-06	1.9E-02	4.9E-04	1.4E-03	1.4E-02	2.9E-03	-1.2E-01
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	2.2E-05	0.0E+00	5.0E-09	2.4E-01	7.4E-03	1.6E-02	1.9E-01	3.3E-02	-3.8E+00
ADPF	Abiotic depletion potential for fossil resources	MJ	3.8E+01	3.5E-01	1.0E-01	4.1E+01	8.6E-03	8.6E-03	2.0E+00	4.8E-02	-2.4E+00

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

Results below contain the resource use throughout the life cycle of the product.

Resource L	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	2.0E+01	0.0E+00	6.0E-04	2.0E+01	0.0E+00	0.0E+00	1.7E-01	1.3E-02	0.0E+00
RPR_{M}	Renewable primary energy resources as material utilization	MJ	9.1E+00	0.0E+00	4.6E-01	9.6E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	2.4E+01	3.5E-01	1.0E-01	2.6E+01	0.0E+00	1.1E-01	1.7E+00	3.1E-01	-3.5E+01
$NRPR_{M}$	Nonrenewable primary energy as material utilization	MJ	1.8E+01	0.0E+00	8.8E-01	1.8E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-3.5E+01							
FW	Use of net fresh water	m ³	2.1E-02	0.0E+00	2.4E-05	7.6E-02	0.0E+00	0.0E+00	5.5E-02	1.6E-04	0.0E+00

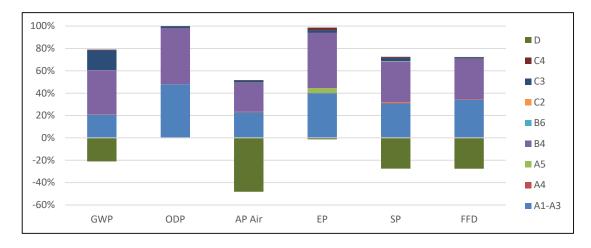
*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flow	s and Waste Categories	;									
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	3.4E-05	0.0E+00	1.7E-06	3.5E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	3.5E-03	0.0E+00	1.2E-01	1.2E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HLRW	High-level radioactive waste	kg	2.1E-02	0.0E+00	2.4E-05	2.1E-02	0.0E+00	0.0E+00	8.2E-06	1.5E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	3.9E-02	0.0E+00	4.3E-01	4.7E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	2.9E-02	9.5E-01	0.0E+00	0.0E+00	9.2E-01	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	7.7E+00	0.0E+00	0.0E+00	7.7E+00	0.0E+00	0.0E+00

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable


Describe les la contation allocation			life and a state a sum down
Results below contain direct g	reennouse gas emissions	s and removals throughout the	iffe cycle of the product.

Resource L	lse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.5E-01	0.0E+00	0.0E+00	1.5E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	1.5E-01	1.5E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.0E+00								

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

LCA Interpretation - 55094804 (2in)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

Residential,Industrial,Tertiary Cable

LCA Results - 55106301 (4in)

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 In	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	2.6E+01	3.3E-02	1.6E-02	2.7E+01	8.6E-03	1.0E-02	3.7E-01	8.7E-03	-3.9E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.1E-06	1.3E-12	5.3E-10	1.1E-06	1.4E-13	4.0E-13	7.3E-09	6.0E-10	-1.4E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	2.1E-01	2.0E-04	5.6E-05	2.1E-01	7.4E-05	6.3E-05	1.6E-04	2.5E-05	-3.2E-01
EP	Eutrophication potential	kg N-Eq.	1.3E-01	1.1E-05	1.0E-03	1.3E-01	1.0E-06	3.5E-06	8.5E-05	7.7E-05	-2.0E-01
SP	Smog formation potential	kg O ₃ -Eq.	1.9E+00	5.4E-03	1.5E-03	1.9E+00	4.9E-04	1.7E-03	2.6E-03	5.4E-04	-2.9E+00
FFD	Fossil Fuel Depletion	MJ-surplus	1.1E+01	6.3E-02	1.8E-02	1.1E+01	7.4E-03	2.0E-02	3.4E-02	6.1E-03	-1.3E+01

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 Impact Assessment

Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	2.6E+01	3.3E-02	1.8E-02	2.7E+01	8.6E-03	1.0E-02	3.7E-01	8.7E-03	-3.9E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	7.7E-07	1.2E-12	4.0E-10	7.8E-07	1.4E-13	4.0E-13	7.3E-09	6.0E-10	-1.4E-06
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	2.2E-01	1.6E-04	4.6E-05	2.2E-01	7.4E-05	6.3E-05	1.6E-04	2.5E-05	-3.2E-01
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	6.3E-02	2.9E-05	3.8E-04	6.4E-02	1.0E-06	3.5E-06	8.5E-05	7.7E-05	-2.0E-01
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.1E-02	7.5E-06	4.0E-06	1.6E-02	4.9E-04	1.7E-03	2.6E-03	5.4E-04	-2.9E+00
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	2.6E-05	0.0E+00	6.1E-09	6.0E-02	7.4E-03	2.0E-02	3.4E-02	6.1E-03	-1.3E+01
ADPF	Abiotic depletion potential for fossil resources	MJ	2.5E+02	4.2E-01	1.2E-01	2.5E+02	8.6E-03	1.1E-02	3.7E-01	8.7E-03	-3.9E+01

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the resource use throughout the life cycle of the product.

Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	2.7E+01	0.0E+00	7.4E-04	2.7E+01	0.0E+00	0.0E+00	3.0E-02	2.4E-03	-7.0E+00
RPR_{M}	Renewable primary energy resources as material utilization	MJ	1.1E+01	0.0E+00	5.6E-01	1.2E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPRE	Nonrenewable primary energy as energy carrier	MJ	2.7E+02	4.2E-01	1.2E-01	2.7E+02	0.0E+00	1.3E-01	3.2E-01	5.7E-02	-4.0E+02
$NRPR_{M}$	Nonrenewable primary energy as material utilization	MJ	1.5E-02	0.0E+00	7.7E-04	1.6E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-4.0E+02							
FW	Use of net fresh water	m ³	5.9E-02	0.0E+00	2.9E-05	6.9E-02	0.0E+00	0.0E+00	1.0E-02	3.0E-05	-8.6E-02

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

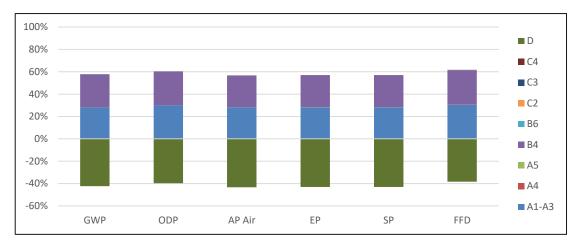
Results below contain the output flows and wastes throughout the life cycle of the product.

Dutput Flows and Waste Categories												
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D	
HWD	Hazardous waste disposed	kg	4.1E-05	0.0E+00	2.1E-06	4.3E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
NHWD	Non-hazardous waste disposed	kg	4.3E-03	0.0E+00	1.4E-01	3.2E-01	0.0E+00	0.0E+00	0.0E+00	1.7E-01	0.0E+00	
HLRW	High-level radioactive waste	kg	5.9E-02	0.0E+00	2.9E-05	5.9E-02	0.0E+00	0.0E+00	1.5E-06	2.8E-07	0.0E+00	
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00									
CRU	Components for re-use	kg	0.0E+00									
MR	Materials for recycling	kg	4.8E-02	0.0E+00	5.3E-01	1.5E+00	0.0E+00	0.0E+00	9.6E-01	0.0E+00	0.0E+00	
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	3.5E-02	3.5E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	6.8E-03	0.0E+00	0.0E+00	6.8E-03	0.0E+00	0.0E+00	

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Resource L	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.8E-01	0.0E+00	0.0E+00	1.8E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	1.8E-01	1.8E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.0E+00								



Residential, Industrial, Tertiary Cable

LCA Interpretation - 55106301 (4in)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

LCA Results - 55282609 (2in)

Results shown below were calculated using TRACI 2.1 Methodology.

FRACI 2.1 Impact Assessment												
Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D		
Global warming potential	kg CO ₂ -Eq.	3.7E+00	3.3E-02	1.6E-02	4.2E+00	8.6E-03	1.0E-02	3.7E-01	8.7E-03	-3.3E+00		
Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	2.7E-07	1.2E-12	5.2E-10	2.8E-07	1.4E-13	4.0E-13	7.3E-09	6.0E-10	-1.9E-07		
Acidification potential for air emissions	kg SO ₂ -Eq.	1.9E-02	2.0E-04	5.5E-05	1.9E-02	7.4E-05	6.2E-05	1.6E-04	2.5E-05	-1.1E-02		
Eutrophication potential	kg N-Eq.	2.8E-02	1.1E-05	1.0E-03	3.0E-02	1.0E-06	3.5E-06	8.4E-05	7.6E-05	-1.2E-02		
Smog formation potential	kg O ₃ -Eq.	2.6E-01	5.3E-03	1.5E-03	2.7E-01	4.9E-04	1.7E-03	2.6E-03	5.3E-04	-1.8E-01		
Fossil Fuel Depletion	MJ-surplus	2.7E+00	6.3E-02	1.8E-02	2.9E+00	7.4E-03	2.0E-02	3.4E-02	6.1E-03	-1.4E+00		
	Parameter Global warming potential Depletion potential of the stratospheric ozone layer Acidification potential for air emissions Eutrophication potential Smog formation potential	Parameter Unit Global warming potential kg CO2-Eq. Depletion potential of the stratospheric ozone layer kg CFC-11 Eq. Acidification potential for air emissions kg SO2-Eq. Eutrophication potential kg N-Eq. Smog formation potential kg O3-Eq.	ParameterUnitA1-A3Global warming potentialkg CO2-Eq.3.7E+00Depletion potential of the stratospheric ozone layerkg CFC-11 Eq.2.7E-07Acidification potential for air emissionskg SO2-Eq.1.9E-02Eutrophication potentialkg N-Eq.2.8E-02Smog formation potentialkg O3-Eq.2.6E-01	ParameterUnitA1-A3A4Global warming potentialkg CO2-Eq.3.7E+003.3E-02Depletion potential of the stratospheric ozone layerkg CFC-11 Eq.2.7E-071.2E-12Acidification potential for air emissionskg SO2-Eq.1.9E-022.0E-04Eutrophication potentialkg N-Eq.2.8E-021.1E-05Smog formation potentialkg O3-Eq.2.6E-015.3E-03	ParameterUnitA1-A3A4A5Global warming potentialkg CO2-Eq.3.7E+003.3E-021.6E-02Depletion potential of the stratospheric ozone layerkg CFC-11 Eq.2.7E-071.2E-125.2E-10Acidification potential for air emissionskg SO2-Eq.1.9E-022.0E-045.5E-05Eutrophication potentialkg N-Eq.2.8E-021.1E-051.0E-03Smog formation potentialkg O3-Eq.2.6E-015.3E-031.5E-03	Parameter Unit A1-A3 A4 A5 B4 Global warming potential kg CO2-Eq. 3.7E+00 3.3E-02 1.6E-02 4.2E+00 Depletion potential of the stratospheric ozone layer kg CFC-11 Eq. 2.7E-07 1.2E-12 5.2E-10 2.8E-07 Acidification potential for air emissions kg SO2-Eq. 1.9E-02 2.0E-04 5.5E-05 1.9E-02 Eutrophication potential kg N-Eq. 2.8E-02 1.1E-05 1.0E-03 3.0E-02 Smog formation potential kg O3-Eq. 2.6E-01 5.3E-03 1.5E-03 2.7E-01	Parameter Unit A1-A3 A4 A5 B4 B6 Global warming potential kg CO2-Eq. 3.7E+00 3.3E-02 1.6E-02 4.2E+00 8.6E-03 Depletion potential of the stratospheric ozone layer kg CFC-11 Eq. 2.7E-07 1.2E-12 5.2E-10 2.8E-07 1.4E-13 Acidification potential for air emissions kg SO2-Eq. 1.9E-02 2.0E-04 5.5E-05 1.9E-02 7.4E-05 Eutrophication potential kg N-Eq. 2.8E-02 1.1E-05 1.0E-03 3.0E-02 1.0E-06 Smog formation potential kg O3-Eq. 2.6E-01 5.3E-03 1.5E-03 2.7E-01 4.9E-04	Parameter Unit A1-A3 A4 A5 B4 B6 C2 Global warming potential kg CO2-Eq. 3.7E+00 3.3E-02 1.6E-02 4.2E+00 8.6E-03 1.0E-02 Depletion potential of the stratospheric ozone layer kg CFC-11 Eq. 2.7E-07 1.2E-12 5.2E-10 2.8E-07 1.4E-13 4.0E-13 Acidification potential for air emissions kg SO2-Eq. 1.9E-02 2.0E-04 5.5E-05 1.9E-02 7.4E-05 6.2E-05 Eutrophication potential kg N-Eq. 2.8E-02 1.1E-05 1.0E-03 3.0E-02 1.0E-06 3.5E-06 Smog formation potential kg O3-Eq. 2.6E-01 5.3E-03 1.5E-03 2.7E-01 4.9E-04 1.7E-03	Parameter Unit A1-A3 A4 A5 B4 B6 C2 C3 Global warming potential kg CO2-Eq. 3.7E+00 3.3E-02 1.6E-02 4.2E+00 8.6E-03 1.0E-02 3.7E-01 Depletion potential of the stratospheric ozone layer kg CFC-11 Eq. 2.7E-07 1.2E-12 5.2E-10 2.8E-07 1.4E-13 4.0E-13 7.3E-09 Acidification potential for air emissions kg SO2-Eq. 1.9E-02 2.0E-04 5.5E-05 1.9E-02 7.4E-05 6.2E-05 1.6E-04 Eutrophication potential kg N-Eq. 2.8E-02 1.1E-05 1.0E-03 3.0E-02 1.0E-06 3.5E-06 8.4E-05 Smog formation potential kg O3-Eq. 2.6E-01 5.3E-03 1.5E-03 2.7E-01 4.9E-04 1.7E-03 2.6E-03	Parameter Unit A1-A3 A4 A5 B4 B6 C2 C3 C4 Global warming potential kg CO2-Eq. 3.7E+00 3.3E-02 1.6E-02 4.2E+00 8.6E-03 1.0E-02 3.7E-01 8.7E-03 Depletion potential of the stratospheric ozone layer kg CFC-11 Eq. 2.7E-07 1.2E-12 5.2E-10 2.8E-07 1.4E-13 4.0E-13 7.3E-09 6.0E-10 Acidification potential for air emissions kg SO2-Eq. 1.9E-02 2.0E-04 5.5E-05 1.9E-02 7.4E-05 6.2E-05 1.6E-04 2.5E-05 Eutrophication potential kg N-Eq. 2.8E-02 1.1E-05 1.0E-03 3.0E-02 1.0E-06 3.5E-06 8.4E-05 7.6E-05 Smog formation potential kg O3-Eq. 2.6E-01 5.3E-03 1.5E-03 2.7E-01 4.9E-04 1.7E-03 2.6E-03 5.3E-04		

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	3.8E+00	3.3E-02	1.8E-02	4.2E+00	8.6E-03	1.0E-02	3.7E-01	8.7E-03	-3.3E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	2.1E-07	1.2E-12	3.9E-10	2.2E-07	1.4E-13	4.0E-13	7.3E-09	6.0E-10	-1.9E-07
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	1.8E-02	1.6E-04	4.6E-05	1.9E-02	7.4E-05	6.2E-05	1.6E-04	2.5E-05	-1.1E-02
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	1.3E-02	2.9E-05	3.8E-04	1.4E-02	1.0E-06	3.5E-06	8.4E-05	7.6E-05	-1.2E-02
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	1.6E-03	7.4E-06	4.0E-06	6.5E-03	4.9E-04	1.7E-03	2.6E-03	5.3E-04	-1.8E-01
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	6.9E-04	0.0E+00	6.1E-09	6.1E-02	7.4E-03	2.0E-02	3.4E-02	6.1E-03	-1.4E+00
ADPF	Abiotic depletion potential for fossil resources	MJ	4.0E+01	4.2E-01	1.2E-01	4.1E+01	8.6E-03	1.0E-02	3.7E-01	8.7E-03	-3.4E+00

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

Results below contain the resource use throughout the life cycle of the product.

Resource L	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	2.5E+01	0.0E+00	7.3E-04	2.5E+01	0.0E+00	0.0E+00	3.0E-02	2.4E-03	-1.1E+00
RPR_{M}	Renewable primary energy resources as material utilization	MJ	1.1E+01	0.0E+00	5.5E-01	1.2E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	4.3E+01	4.2E-01	1.2E-01	4.4E+01	0.0E+00	1.3E-01	3.2E-01	5.7E-02	-3.3E+01
$NRPR_{M}$	Nonrenewable primary energy as material utilization	MJ	1.5E-02	0.0E+00	7.6E-04	1.6E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-3.4E+01							
FW	Use of net fresh water	m ³	2.9E-02	0.0E+00	2.9E-05	3.9E-02	0.0E+00	0.0E+00	1.0E-02	2.9E-05	-1.4E-02

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the output flows and wastes throughout the life cycle of the product.

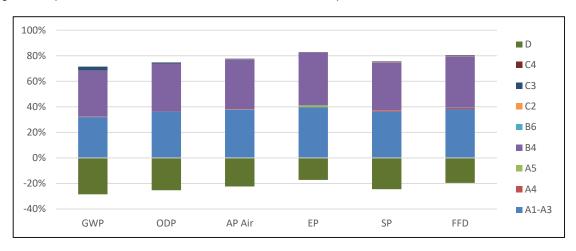
Dutput Flows and Waste Categories												
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D	
HWD	Hazardous waste disposed	kg	4.1E-05	0.0E+00	2.0E-06	4.3E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
NHWD	Non-hazardous waste disposed	kg	4.3E-03	0.0E+00	1.4E-01	1.4E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
HLRW	High-level radioactive waste	kg	2.9E-02	0.0E+00	2.9E-05	2.9E-02	0.0E+00	0.0E+00	1.5E-06	2.7E-07	0.0E+00	
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00									
CRU	Components for re-use	kg	0.0E+00									
MR	Materials for recycling	kg	4.7E-02	0.0E+00	5.3E-01	5.7E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	3.5E-02	1.2E+00	0.0E+00	0.0E+00	1.1E+00	0.0E+00	0.0E+00	
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	6.7E-03	0.0E+00	0.0E+00	6.7E-03	0.0E+00	0.0E+00	

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.

Resource L	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	1.8E-01	0.0E+00	0.0E+00	1.8E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	1.8E-01	1.8E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.0E+00								



Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

LCA Interpretation - 55282609 (2in)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

LCA Results - 55287001 (1/2in)

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 Ir	npact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	5.6E+00	7.0E-03	3.4E-03	5.7E+00	1.2E-01	2.2E-03	7.9E-02	1.8E-03	-8.3E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	2.3E-07	2.7E-13	1.1E-10	2.3E-07	1.9E-12	8.4E-14	1.5E-09	1.3E-10	-3.0E-07
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	4.4E-02	4.2E-05	1.2E-05	4.4E-02	9.9E-04	1.3E-05	3.5E-05	5.3E-06	-6.7E-02
EP	Eutrophication potential	kg N-Eq.	2.8E-02	2.3E-06	2.2E-04	2.8E-02	1.3E-05	7.3E-07	1.8E-05	1.6E-05	-4.3E-02
SP	Smog formation potential	kg O ₃ -Eq.	4.0E-01	1.1E-03	3.2E-04	4.0E-01	6.6E-03	3.6E-04	5.5E-04	1.1E-04	-6.0E-01
FFD	Fossil Fuel Depletion	MJ-surplus	2.2E+00	1.3E-02	3.8E-03	2.3E+00	1.0E-01	4.2E-03	7.2E-03	1.3E-03	-2.8E+00

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 lr	npact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	5.6E+00	7.0E-03	3.8E-03	5.7E+00	1.2E-01	2.2E-03	7.9E-02	1.8E-03	-8.3E+00
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.6E-07	2.6E-13	8.3E-11	1.6E-07	1.9E-12	8.4E-14	1.5E-09	1.3E-10	-3.0E-07
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	4.5E-02	3.4E-05	9.7E-06	4.6E-02	9.9E-04	1.3E-05	3.5E-05	5.3E-06	-6.7E-02
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	1.3E-02	6.1E-06	8.0E-05	1.3E-02	1.3E-05	7.3E-07	1.8E-05	1.6E-05	-4.3E-02
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	2.3E-03	1.6E-06	8.5E-07	3.3E-03	6.6E-03	3.6E-04	5.5E-04	1.1E-04	-6.0E-01
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	5.4E-06	0.0E+00	1.3E-09	1.3E-02	1.0E-01	4.2E-03	7.2E-03	1.3E-03	-2.8E+00
ADPF	Abiotic depletion potential for fossil resources	MJ	5.2E+01	8.9E-02	2.6E-02	5.2E+01	1.2E-01	2.2E-03	7.9E-02	1.8E-03	-8.3E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the resource use throughout the life cycle of the product.

Resource L	lse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
RPR _E	Renewable primary energy as energy carrier	MJ	5.7E+00	0.0E+00	1.5E-04	5.7E+00	0.0E+00	0.0E+00	6.4E-03	5.0E-04	-1.5E+00
RPR_{M}	Renewable primary energy resources as material utilization	MJ	2.4E+00	0.0E+00	1.2E-01	2.5E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	5.7E+01	8.9E-02	2.6E-02	5.8E+01	0.0E+00	2.8E-02	6.7E-02	1.2E-02	-8.4E+01
$NRPR_{M}$	Nonrenewable primary energy as material utilization	MJ	3.3E-03	0.0E+00	1.6E-04	3.4E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-8.5E+01							
FW	Use of net fresh water	m ³	1.2E-02	0.0E+00	6.1E-06	1.5E-02	0.0E+00	0.0E+00	2.1E-03	6.2E-06	-1.8E-02

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

🛞 Southwire®

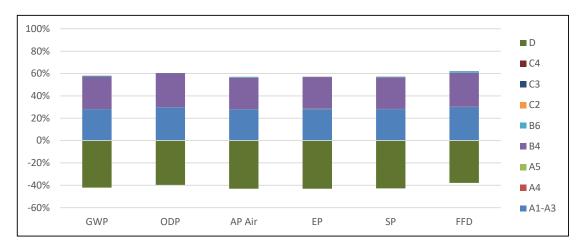
According to ISO 14025, EN 15804, and ISO 21930:2017

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flow	s and Waste Categories										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	8.7E-06	0.0E+00	4.3E-07	9.1E-06	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	9.1E-04	0.0E+00	3.0E-02	6.6E-02	0.0E+00	0.0E+00	0.0E+00	3.6E-02	0.0E+00
HLRW	High-level radioactive waste	kg	1.2E-02	0.0E+00	6.1E-06	1.2E-02	0.0E+00	0.0E+00	3.2E-07	5.8E-08	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	1.0E-02	0.0E+00	1.1E-01	3.2E-01	0.0E+00	0.0E+00	2.0E-01	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	7.4E-03	7.4E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	1.4E-03	0.0E+00	0.0E+00	1.4E-03	0.0E+00	0.0E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.


Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	3.9E-02	0.0E+00	0.0E+00	3.9E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	3.9E-02	3.9E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO₂	0.0E+00								

Residential,Industrial,Tertiary Cable

LCA Interpretation - 55287001 (1/2in)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

LCA Results - 55289202 (4in)

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 li	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	1.5E+01	1.3E-01	6.6E-02	1.9E+01	8.6E-03	4.3E-02	4.0E+00	9.4E-02	-1.3E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	3.3E-06	5.1E-12	2.1E-09	3.4E-06	1.4E-13	1.6E-12	7.9E-08	6.5E-09	-5.5E-07
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	7.3E-02	8.0E-04	2.3E-04	7.6E-02	7.4E-05	2.6E-04	1.8E-03	2.7E-04	-6.2E-02
EP	Eutrophication potential	kg N-Eq.	9.8E-02	4.5E-05	4.2E-03	1.0E-01	1.0E-06	1.4E-05	9.1E-04	8.3E-04	-3.6E-02
SP	Smog formation potential	kg O ₃ -Eq.	1.0E+00	2.2E-02	6.2E-03	1.1E+00	4.9E-04	7.0E-03	2.8E-02	5.8E-03	-6.9E-01
FFD	Fossil Fuel Depletion	MJ-surplus	1.6E+01	2.6E-01	7.3E-02	1.7E+01	7.4E-03	8.2E-02	3.7E-01	6.6E-02	-9.6E+00

Southwire Flexible Metal Conduit

Residential, Industrial, Tertiary Cable

Results shown below were calculated using CML 2001 - April 2013 Methodology.

CML 4.1 lr	mpact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
GWP	Global warming potential	kg CO ₂ -Eq.	1.5E+01	1.4E-01	7.4E-02	1.9E+01	8.6E-03	4.3E-02	4.0E+00	9.4E-02	-1.3E+01
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	3.1E-06	5.1E-12	1.6E-09	3.2E-06	1.4E-13	1.6E-12	7.9E-08	6.5E-09	-5.5E-07
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	7.1E-02	6.6E-04	1.9E-04	7.4E-02	7.4E-05	2.6E-04	1.8E-03	2.7E-04	-6.2E-02
EP	Eutrophication potential	kg(PO ₄) ³ -Eq.	4.6E-02	1.2E-04	1.5E-03	4.9E-02	1.0E-06	1.4E-05	9.1E-04	8.3E-04	-3.6E-02
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	5.8E-03	3.1E-05	1.6E-05	4.7E-02	4.9E-04	7.0E-03	2.8E-02	5.8E-03	-6.9E-01
ADPE	Abiotic depletion potential for non-fossil resources	kg Sb-Eq.	2.1E-03	0.0E+00	2.5E-08	5.2E-01	7.4E-03	8.2E-02	3.7E-01	6.6E-02	-9.6E+00
ADPF	Abiotic depletion potential for fossil resources	MJ	1.8E+02	1.7E+00	5.0E-01	1.9E+02	8.6E-03	4.3E-02	4.0E+00	9.4E-02	-1.3E+01

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain the resource use throughout the life cycle of the product.

Resource L	Jse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
RPRE	Renewable primary energy as energy carrier	MJ	1.0E+02	0.0E+00	3.0E-03	1.0E+02	0.0E+00	0.0E+00	3.3E-01	2.6E-02	-3.2E+00
RPR_{M}	Renewable primary energy resources as material utilization	MJ	4.6E+01	0.0E+00	2.3E+00	4.8E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRPR _E	Nonrenewable primary energy as energy carrier	MJ	1.7E+02	1.7E+00	5.1E-01	1.8E+02	0.0E+00	5.5E-01	3.4E+00	6.2E-01	-1.5E+02
$NRPR_{M}$	Nonrenewable primary energy as material utilization	MJ	2.6E+01	0.0E+00	1.3E+00	2.7E+01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	Use of secondary material	kg	0.0E+00								
RSF	Use of renewable secondary fuels	MJ	0.0E+00								
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00								
RE	Energy recovered from disposed waste	MJ	0.0E+00	-1.5E+02							
FW	Use of net fresh water	m ³	1.2E-01	0.0E+00	1.2E-04	2.3E-01	0.0E+00	0.0E+00	1.1E-01	3.2E-04	-4.2E-02

Southwire Flexible Metal Conduit

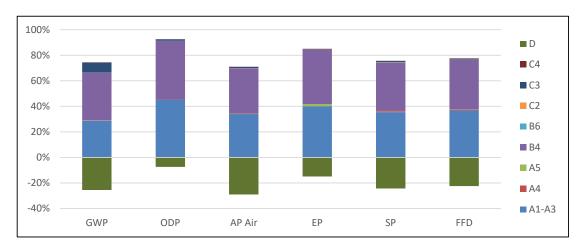
Residential, Industrial, Tertiary Cable

Results below contain the output flows and wastes throughout the life cycle of the product.

utput Flow	s and Waste Categories										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	1.7E-04	0.0E+00	8.4E-06	1.8E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	Non-hazardous waste disposed	kg	1.8E-02	0.0E+00	5.8E-01	6.0E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HLRW	High-level radioactive waste	kg	1.2E-01	0.0E+00	1.2E-04	1.2E-01	0.0E+00	0.0E+00	1.6E-05	3.0E-06	0.0E+00
ILLRW	Intermediate- and low-level radioactive waste	kg	0.0E+00								
CRU	Components for re-use	kg	0.0E+00								
MR	Materials for recycling	kg	1.9E-01	0.0E+00	2.2E+00	2.4E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
MER	Materials for energy recovery	kg	0.0E+00	0.0E+00	1.4E-01	4.8E+00	0.0E+00	0.0E+00	4.6E+00	0.0E+00	0.0E+00
EE	Recovered energy exported from system	MJ	0.0E+00	0.0E+00	0.0E+00	1.1E+01	0.0E+00	0.0E+00	1.1E+01	0.0E+00	0.0E+00

*All use phase and disposal stages have been considered and only those with non-zero values have been reported

Results below contain direct greenhouse gas emissions and removals throughout the life cycle of the product.


Resource L	lse										
Parameter	Parameter	Unit	A1-A3	A4	A5	B4	B6	C2	C3	C4	D
BCRP	Biogenic Carbon Removal from Product	kg CO ₂	0.0E+00								
BCEP	Biogenic Carbon Emissions from Product	kg CO ₂	0.0E+00								
BCRK	Biogenic Carbon Removal from Packaging	kg CO ₂	7.5E-01	0.0E+00	0.0E+00	7.5E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEK	Biogenic Carbon Emissions from Packaging	kg CO ₂	0.0E+00	0.0E+00	7.5E-01	7.5E-01	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
BCEW	Biogenic Carbon Emissions from Combustion of Waste from Renewable Sources Used in Production Process	kg CO ₂	0.0E+00								
CCE	Calcination Carbon Emissions	kg CO ₂	0.0E+00								
CCR	Carbonation Carbon Removal	kg CO ₂	0.0E+00								
CWNR	Carbon Emissions from Combustion of Waste from Non-renewable Sources Used in Production Process	kg CO ₂	0.0E+00								

LCA Interpretation - 55289202 (4in)

The production life cycle stage (A1-A3) and in life energy usage (B6) dominate the impacts across all impact categories. This is due to the upstream production of materials used in the product, along with electricity use in the manufacturing of the product and the consumption of electricity during the cable's usage. With one replacement required over a life-span of a building, the replacement stage (B4) dominates from duplicating these stages. Module B4 excludes operational energy use and all benefits and loads beyond the system boundary. As one replacement occurs in the specified building service life, module B6 includes the energy usage of two products and module D includes the benefits of two products.

Southwire[®]

According to

ISO 14025, EN 15804, and ISO 21930:2017

Southwire Flexible Metal Conduit

Residential,Industrial,Tertiary Cable

Environmental and Health During Manufacturing

At Southwire, we nurture the culture of a "Southwire family" and we work each day to enhance the lives of our employees by building a workplace that is diverse, supportive and engaging. Safety and health are top priorities, and we will always treat each other with dignity and respect. Southwire is committed to operating its facilities in compliance with applicable local, state/provincial, and federal environmental, health and safety (EHS) regulations, as well as implementing more stringent internal standards when necessary to protect our environment, our employees, and the general public. We are dedicated to prevent, reduce or eliminate pollution and health and safety risks at the source and are committed to continual improvement of our management systems to enhance performance, engage employees, and work toward a culture of zero incidents. Southwire recognizes the universal need for care and protection of our natural resources. In addition, Southwire acknowledges that our greatest asset is our people, and we seek to create a workplace where employee safety and health are always top priority.

Environmental and Health During Installation

There is no harmful emissive potential. No damage to health or impairment is expected under normal use corresponding to the intended use of the product.

Extraordinary Effects

Fire

Cable is specified for use up to 60C and complies with EN50575 EuroClass performance such as Dca, s2, d2, a1 or the IEC 60332-1 flammability test.

Water None. Mechanical Destruction None.

Delayed Emissions

Global warming potential is calculated using the TRACI 2.1 and CML 4.1 impact assessment methodologies. Delayed emissions are not considered.

Environmental Activities and Certifications

Southwire monitors and changes processes and/or raw materials, where feasible, to reduce the volume and toxicity of waste generated. Wastes that are unavoidably generated are managed in accordance with regulatory agency-approved methods, and we recycle and reuse waste materials to the greatest extent feasible. Healthy air is vital to the well-being of the Southwire employees, the general public, and the environment. Through a variety of control technologies and operational measures, Southwire strives to minimize our pollutant emissions from our activities. In addition, we have established voluntary targets to reduce some of our air emissions beyond regulatory requirements. Southwire recognizes that water is an essential natural resource that is critical to our communities, the environment, and our business operations. We conserve water by minimizing the water consumption intensity associated with our operations and activities. We also seek to reduce or eliminate wastewaters from our processes where feasible and maintain the quality of our wastewater discharges within applicable regulatory limits. Southwire has achieved ISO 14001 certification at several of our manufacturing facilities.

Further Information

Southwire Company One Southwire Drive Carrollton, GA 30119 USA

Southwire Flexible Metal Conduit

Residential,Industrial,Tertiary Cable

References

- PCR Part A	The Norwegian EPD Foundation: NPCR Part A: Construction Products and Services, v1.0, 2017.
- PCR Part B	The Norwegian EPD Foundation: NPCR 027 Part B: Electrical Cables and Wires, v1.0, October 2020.
- Secondary PCR Part A	PEP ecopassport Program: Product Category Rules for Electrical, Electronic and HVAC-R Products, v3.0, April 2015.
- Secondary PCR Part B	PEP ecopassport Program: Product Specific Rules for Wores, Cables and Accessories, v3.0, October 2015.
- SimaPro v9.2	PRe Sustainability. SimaPro Life Cycle Assessment version 9.2 (software).
- ISO 14025	ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.
- ISO 14040	ISO 14040:2009-11, Environmental management — Life cycle assessment — Principles and framework.
- ISO 14044	ISO 14044:2006-10, Environmental management — Life cycle assessment — Requirements and guidelines.
- EN 15804	EN 15804:2012-04: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction product
- ULE 2020	UL Environment, General Program Instructions, v2.5, March 2020.
- ISO 21930: 2017	ISO 21930:2017, Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products and services.
- Characterization Method	IPCC. 2014. Climate Change 2013. The Physical Science Basis. Cambridge University Press. (http://www.ipcc.ch/report/ar5/wg1/).
- Characterization Method	Hauschild M.Z., & Wenzel H. Environmental Assessment of Products. Springer, US, Vol. 2, 1998.
- Characterization Method	Heijungs R., Guinée J.B., Huppes G., Lankreijer R.M., Udo de Haes H.A., Wegener Sleeswijk A. Environmental Life Cycle Assessment of Products: Guide and Backgrounds. CML. Leiden University, Leiden, 1992.
- Characterization Method	Jenkin M.E., & Hayman G.D. Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters. Atmospheric Environment. 1999, 33 (8) pp. 1275-1293.
- Characterization Method	WMO. 1999. Scientific Assessment of Ozone Depletion: 1998, World Meteorological Organization Global Ozone Research and Monitoring Project - Report No. 44, WMO, Geneva.
- Characterization Method	Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources using Environmental Chambers- version 1.2, January 2017.
- IEC 60228:2004	Conductors of Insulated Cables

Southwire Flexible Metal Conduit Residential,Industrial,Tertiary Cable

Contact Information

Study Commissioner

Mark Rogers Sr. Product Stewardship Coordinator Southwire Company One Southwire Drive Carrollton, Georgia 30119 Tel: (770) 832-5359 Email: mark.rogers@southwire.com

Southwire[®]

LCA Practitioner

Sustainable Solutions Corporation 155 Railroad Plaza, Suite 203 Royersford, PA 19468 USA (+1) 610 569-1047 info@sustainablesolutionscorporation.com www.sustainablesolutionscorporation.com

