Appendix V Theory of Compressive Stress in Aluminum of ACSR

THEORY OF COMPRESSIVE STRESS IN ALUMINUM OF ACSR

Nomenclature
A, = total aluminum area
A; = area of strand in ith layer
d = strand diameter
D = outside diameter of strand layer
E = Young's modulus
I = length of wire in one lay length
n; = number of strands in ith layer
P = Total tension or compression load in aluminum part of ACSR
R = radius of strand helix (radius from conductor axis to strand axes)
T = tension (or compression) force in one strand of ith layer
Y = interlayer pressure per unit length of strand
a = lay angle of strand helix at strand axis
A, = Radial expansion of aluminum portion as a unit
€ = conductor axial strain
€, = conductor strain during unloading after aluminum goes slack
K = curvature of strand due to helicity = sina/R
- A = lay length

Introduction

Consider an ACSR that has been subjected to some initial loading, following which
the load is reduced. The unloading will follow the final stress-strain curve, and at
some point the tension in the aluminum portion will go to zero. Since the aluminum
will have experienced some plastic deformation, while the steel will have experienced
little if any, the steel will still be under tension when the aluminum "goes slack."

As the conductor tension is reduced further, the aluminum layers will tend to
expand away from the core and become loose. The rates at which the individual
aluminum layers expand will usually be different, due to differences in the layer
diameters and the lay angles of the strands. A shallow lay angle or large lay ratio will
cause more rapid radial expansion than a large lay angle or short lay ratio. Because of
this, there are conditions where an inner layer will expand radially more rapidly than
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the layer above it, and there will be interference between them. When that happens,
the layers must press against and strain against each other, and one effect of this is a
net compressive stress developing in the pair of layers taken as a unit. If there are
more than two aluminum layers, then three or more layers may lock together in this
manner, depending upon.’their relative rates of radial expansion following unloading of
the conductor past the "slack aluminum" point.

The effect of this net compressive stress is to extend the final stress-strain curve for
the aluminum into the negative stress range, rather than simply having it stop at zero
stress as is generally assumed. In that range, the effective aluminum modulus is
different from that in the positive stress range, being determined by the degree to
which the various layers interfere with each others' expansion. We can calculate this
negative-stress leg of the final aluminum curve by analyzing that interference.

Analysis

We will focus on what happens as conductor elongation is further reduced, after
having reached the point where the aluminum goes slack. Let us assume that all
aluminum layers go slack simultaneously, although this is probably only approximately
true. We will begin the analysis by determining how rapidly each layer would expand
radially, during this further reduction in elongation, in the absence of interference.
Then we will determine how much each layer must be deflected radially from its free
expansion position in order to eliminate the interference, and yet leave the locked-
together set of interfering layers in mechanical equilibrium. These individual
deflections will require strains in the strands of the layers in question, and those strains
will determine the layer tensions. The sum of these tensions is the tension in the
aluminum, and that may be used to calculate an overall average aluminum stress. The
ratio of this stress to the conductor strain that provoked the interference between
layers is the aluminum modulus in the negative stress range.

Let the decreasing conductor strain that follows the point where the aluminum goes

slack be €, Now the length of strand in one lay length is,
/__....—-—-—“'Z

If there is no interference between layers when €, occurs, the strand will experience
negligible stress, so [ will be constant. Lay length A will change, however, because of
€., and the rate at which R varies with A is,
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But the conductor strain is. €, = ‘—f\i , S0 d\ = \- €, , and the radial expansion of
~ the layer s, '
- — A .
AR = 2rtan & €n

Note that €, is negative, so AR is positive. Now, if the outside diameter of the layer
is D and strand diameter is d, then

R=5 (D*c&\;} —> A
But in a well-packed strand layer, D —d = %" , SO A= S’T;:‘i and,
()2: /-. AR = —6':1:112&.6”

B2

If we identify the individual layers by the subscript, 2 = 1,2, 3, ..., then
AR; = —ghii & o

These AR; are generally different, even though all layers experience the same
conductor strain, €, . The next step in our analysis is to force all interfering layers to
share the same radial deflection, A,. This will require additional deflections, éR; ,
such that,” - " ‘

ARL+5RL=AG ' (2)

for all interfering layers. In reality, these additional ~deflections take place
simultaneously with the AR; , but it is convenient for us to treat them as though they
took place sequentially. Thus, we have treated the AR; as though they took place
without change in strand tension, letting that remain zero. The layers expanded
without restraining each other. Now we will treat the 6 R; as occurring in the absence
of additional conductor strain, as we force the layers to the position where they are in
contact, but do not interpenetrate.
If the conductor elongation is indeed held constant during this second step, then so
‘is lay length, A, so the rate of change of helix radius with respect to wire length is,

R _ 1 . 2. _ 1 . _1 — 1
8l T 2 gnp-x T~ or 2 T 2rsine
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So,
§R=s—+— 4%

27-sin &

But, sina=£w—l—'-d—),sol="—'(-D—"—Q. Also, D-d =122, so,

R, = e (2), ®

This gives the radial deflection of the layer as a function of the longitudinal strain of
the wire of the strands, dl/l. We will take the source of dl/I to be a change in strand
tension, T}, and this tension arises because the interfering layers press against each
other.
If the area of a strand in the ith layer is A; , then
T,=EA;- (§),, sothat = 6R; =zl — T,

i
The tension required to cause deflection 6 R; is thus,

:I}:ﬁ%ziﬁt.(s& @)

Now, strand tension ordinarily results in a binding pressure from the layer in
question upon the layer below. In the present case, however, the inner layer(s) of the
interfering group of layers will be in compression, so they will exert a pressure
outward to meet the inward pressures from above. Within the group of layers that is
expanding as a unit, the radial forces from the various layers must be in equilibrium;
they must add up to zero, since the group is out of contact with layers below and
above. We need to relate these interlayer forces to the strand tensions, T;.

Let the radial force acting between the layers be ¥ perﬁunit strand length for each

b

strand in the layer. Now it can be shown thatf?: k- T, iwhere T is the tension (or

e T

compression) in the strand along its axis, and x is the curvature of the strand. For a
helix, k = sina/R. The total inward radial force from a layer, per unit length along

the conductor is thus,

n

nY _ _n
cosa | cosa

sin“a _ . 6 N . .
-2 -T =n-sina-tano- o3 T = 3-sina-tane T

The cos « in the denominator occurs because we are now working per unit length of
conductor, instead of strand. These interlayer radial forces must add up to zero, so
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Substituing (4) into (5), ,

in o;-tan o 6-E: A:-sinc
6. snepmnal GRAMRS . §R; =0
i

nid;
and,
> B .siffo;-taneg-OR; = 0 | (6)

This gives one equation relating the 6R; as unknowns. All other parameters in (6)
are defined by the conductor structure. The equation imposes balance of radial forces
within the interfering group of layers.

Equation (1) may be substituted into (2), to eliminate the AR, thus:

bR =D, + 555 e, (M

providing as many equations as there are interfering layers. These equations, with (6)
form a set of simultaneous equations that maybe solved for A, and the 6R; as

unknowns.
E: A;

For compactness, define Ci= 25 - siner; -tancy; (®)

3

TE;, | 3
= —— :siN"q; - tan o
L

and | 'B; = ﬁ%; e

Then these equations can be written in matrix form. For illustration we will assume
three interfering layers. Thus,

1 0 0 -1

0 1 0 -1 2, 3,

0 0 1 -1 {%&} =€n'{%§} (10)
c, Co C; O
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This may be written even more compactly as,

S o

[ o ; P
! é\;fzg & s

Loy
o K%

C-6=¢,-B

where C is the square matrix, 6 is the column vector, {0R; 6R; 6R3 AC}T, and B
is the column vector, {B; By B3 O}T.

Then, f=¢,-C ' B (12)

where C ™! is the matrix inverse of C. Now, from (4), the tension per strand in the ith

layer is,
T, = s-E-,:Zin?a .6R;
Define
H = 6-E-ﬁ;~is:in'-’a- (13)
Then
T;=H; - oR, (14)

The component of T; in the direction of the conductor axis is ;- cos a; , so the
contribution of that layer to conductor tension is,

- n;T;-cose; =n;H;-cosa;-0R;

Thus, the total tension in the group of interfering layers is,

P = z n;H; - cos a; - OR; (15)
i

Define the row vector, F = {n;Hjcos &; nyH,cos s n3Hicosaj ... 0}
Then P is given by a quadratic form:

P=¢-F-C' B (16)

Let the total aluminum area be A. Then the effective aluminum modulus in the

negative stress region is,
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P _ 1 -1
n=a- =y F-C B (17)

Note that E, is defined on the aluminum area, rather than the total conductor area, so
it must be multiplied b@efore being used in sag-tension calculations.
Cautions

This analysis assumes that the magnitude of A, is small compared to the layer radii.
In addition, it is assumed that the the expansion of the aluminum does not become
localized, forming a birdcage. Rather, the looseness of the aluminum is taken to be
uniform along the conductor. There is evidence from Nigol et al that, at least at high
conductor temperatures, the buckling of the aluminum may concentrate into localized
birdcages. In that case, the effective value of E, is reduced. Finally, it is assumed that
the normal compliance at interlayer contacts is negligible.

1994 May 30 C. B. Rawlins

‘Corrected 1996 October 5
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Addendum

The equation between (4) and (5) is not complete. The radial pressure Y is
influenced not only by T but also by the bending moment M and torque H in
the strand. The complete relation is, from Love, §254, Egs (10) and (11) as
applied to a uniform helix,

Y=Tk-—Hrr+ M7 (A1)

We consider the helix to be in equilibrium before being deflected by 6R, so we
are concerned with increments in T, Hand M, with £ and 7 sensibly constant.

Thus,

— =K== — KT +T =% (A2)

Now,
dT’” dT de 1d!
—_— = = _—FEA-—
dR de dR ldR (43)
dH dH dt dr
e - Gd—
dR dr dR dR (44)
dM dM dk dx
-— = _E]=—
dR dk dR dR (45)
Also,
27R A :
l=vVX +41°R?® sina= ————= cosa= (A6)
VA2 +4m2R? VA? +4m2R?
.2 2
sin“o 4R
K= = = AT
R N+47R A7)
,e sinc cosa _ 27 (48)
T R A 4+422R?
Then,
dl 47°R ors
—_— = — = 2T SN
dR A2 +4n2R*
and

1dl 2rsinfa

I = A
[dR R (49)
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Furthermore,

d in® :
E% = 51;12262 - (1~ 2sin’ @) ' (A10)
and,
dr sin® @ - cosa
—= -2 — All
; dR B | —
Collecting' all parts,
ay sxn4 ! sin® & - cos® @ sin® o - cos® o 0
— =FA -2G9 ——— + E] ——— (1 — 2sin” ) (A12

Since A = wd®/4, I = nd*/64, and G = 21, for circular strands,
dy d\* d\*.
B E% (—ﬁ) sin a-i—E;; <-§> sinc cos® &

4
- (2G + E) (d> sinfa cos® o (A13)

However, since E%‘—/G/:;\;n a well packed layer,

81w
dR E—sin a+E—-—sm4acos a —(2G+E)———sm o cos’a (Al4)

The total force, P, per unit length of conductor from all strands in the layer will
be n/cosa times this.  This results in,

o 9 G\ 9
P=FE —T:-sm atana [1 + Zt-r-ﬁcos2 a - (1 +2E> -é;?-sinza cos a] (A15)

Thus, the C; in (8) should be multiplied by the factor in brackets to obtain a
more nearly correct value of E,.

C. B. Rawlins

1996 October 11
Massena, New York
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1 0 0 -1

0 1 0 -1

0o 0 1 -1
C;CyC3 0

(1t 0o 0 o0 -1]
0 1 0 0 -1
0 0 1 o0 -1
0 0 0 1 -1

€1 €3 C3C4 0

1

<C4+C3+C2+C1).

C3+Cy -C2
1 -Cl C3+C1
(C3+C2+C1) 'Cl -C2
L -Cl -C2
=
[C4+C3+Cy -Cy -C3
€y C4atC3+Cy  -C3
-Cl -C2 C4+C2+C1
€y -C» -C3
- G €2 -C3
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-C3 1]
€3 1
C,p+Cy 1
cy 1
-Cy 1}
-C4 1]
¢y 1
C3—-C2+Cl I!
Cy 1



Compression Modulus of a Free Strand Layer

When the aluminum layers of an ACSR go slack, following a tension loading that
leaves permanent set in them, they are able to sustain some compressive load because they
act as helical compression springs. The stiffness, or spring constant for a helical strand
can be calculated from Love!. This equation actually gives the axial force and torque that
result from axial deflection 6k and torsional deflection 6x. Since we are not interested in
the change in torque, and are assuming that the conductor does not twist, we need only
the part of (42) that gives,

_ 1
Tl |
where C is the torsional rigidity of the strand or wire and B is its flexural rigidity. (As 6

approaches zero, this equation approaches the formula for the constant of a coiled
compression spring as given by Marks.2) For round wire, '

d4 E wd!

R (C - cos’8 + B - sin’6) 6h (1)

B=E[=E-— and C=G®= : 2)
64 2(1+v) 32
Thus,
R 1 (cos*d 9 7 d
R_1 o) . T
5k 1'r2(1+u+sm> 64 ®

Now, per unit length of conductor, ! = 1/sinf. Furthermore, in a well packed
strand layer, 7 = nd/6. Thus, the spring constant for a strand becomes,

R _36sin6 md (c0526 +sin26)
1+v

6h ~ n2d? 64

ond?Esing [cos’d . o
= . -+ sin“@
16 n? 1+v

The spring constant per unit area of strand, that is, its apparent Young's Modulus, is.

4 R 9 (00529

~ 2 1+v

E
. 9 .
= — s — + 6. — 6

Note that Love's 8 = /2 — o, where a is the angle between the helix axis and the

strand axis. The factor,

1T he Mathematical Theory of Elasticity, by A. E. H. Love, Dover, 1944, §271, Eq.
(42).
2Marks' Engineers' Handbook, 4th Edition, page 486, {15.
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?- 2 6 +sin’d | - siné
4 1+v

is nearly constant for practical values of . Taking v = 1/3,

a 5° 10° 15°
Factor | 2.237 | 2.199 | 2.137

Thus, to a good approximation,
E o
Eeff ~ 2.2 ; (5)

There is actually some additional compliance of the strand that results from the
compressive stress on it. From Progress Report 16-P-77, Eq (10a),

or = EAcos’a (6)
Oe

The effective modulus then becomes,

] | v
Eefr= 1 1 (M)

9 25, . 2 E - )
3~(-°f’;;-+sm 6)-:; sing  Esin®0

1 E : .
=3 + T~ 1 ‘ (8)
2.2- ;53 Ecos’a 23 T o5 '

For a 6 strand layer with o = 15°, this changes E.fs from 611,111 psi to 572,304, a
reduction of 6.35%. For a 7 strand layer, the change is 4.74%; for 8 strand, 3.00%; 9
strand, 2.92%,; 10 strand, 2.38%. ' '

C. B. Rawlins

1996 October 9
Massena, NY
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