Instrumentation Cable

APPLICATIONS
• Predominantly used in utility substations
• Can be installed indoors or outdoors, direct burial, free air, raceways, encased in concrete, open trays, troughs, or continuous rigid cable support
• Other Uses
 • Class 1 remote-control and signaling circuits
 • Class 1, Division 2 hazardous locations
• Conductor operating temperatures are not to exceed 90°C wet or dry
• Rated 600 Volts

CONSTRUCTION DETAILS
• Conductors
 • 18 or 16 AWG, 7 Strand, Annealed Bare Copper
• Insulation
 • Tough, Heat and Moisture Resistant Polyvinyl Chloride (PVC)
 • Color Code: (Pairs – Black, White, and Numbered) & (Triads – Black, White, Red, and Numbered)
 • Conductor Jacket: Clear Nylon (polyamide)
• Assembly
 • Color-coded twisted pairs or triads; group of pairs or triads with numeric print identification on the groups
 • Overall aluminum polyester foil with 100% coverage, tinned drain wire

SPECIFICATIONS
Southwire’s Substation Instrumentation Cable meets or exceeds:
• All Applicable ASTM Specifications
• UL 83
• UL1277
• UL1581
• UL 1685
• IEEE 1202
• ICEA T-30-520
• RoHS Compliant

OPTIONS
• Unshielded Pairs or Triads, with Overall Shield
• XLP Insulated Conductors
• Rip Cord
• Also Available in 300V Construction Upon Request

CONSTRUCTION AT A GLANCE

CONDUCTOR TYPE 18 – 16 AWG COPPER
INSULATION TYPE PVC/ NYLON
JACKET TYPE PVC
Dimensions and weights shown above are nominal and subject to industry tolerances.

<table>
<thead>
<tr>
<th>Size</th>
<th>Number of Pairs</th>
<th>Numbers of Triads</th>
<th>Insulation Thickness inches</th>
<th>Insulation Jacket Thickness inches</th>
<th>Overall Jacket Thickness inches</th>
<th>Nominal Core Diameter inches</th>
<th>Nominal Overall Diameter inches</th>
<th>Approximate Weight lbs/1000 ft</th>
<th>Approximate Weight kg/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
<td>0.015</td>
<td>0.38</td>
<td>0.004</td>
<td>0.1</td>
<td>0.045</td>
<td>1.14</td>
<td>0.167</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>1</td>
<td>0.015</td>
<td>0.38</td>
<td>0.004</td>
<td>0.1</td>
<td>0.045</td>
<td>1.14</td>
<td>0.181</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>1</td>
<td>0.015</td>
<td>0.38</td>
<td>0.004</td>
<td>0.1</td>
<td>0.045</td>
<td>1.14</td>
<td>0.191</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>-</td>
<td>0.015</td>
<td>0.38</td>
<td>0.004</td>
<td>0.1</td>
<td>0.045</td>
<td>1.14</td>
<td>0.377</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>-</td>
<td>0.015</td>
<td>0.38</td>
<td>0.004</td>
<td>0.1</td>
<td>0.045</td>
<td>1.14</td>
<td>0.429</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>-</td>
<td>0.015</td>
<td>0.38</td>
<td>0.004</td>
<td>0.1</td>
<td>0.045</td>
<td>1.14</td>
<td>0.471</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>-</td>
<td>0.015</td>
<td>0.38</td>
<td>0.004</td>
<td>0.1</td>
<td>0.045</td>
<td>1.14</td>
<td>0.536</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>-</td>
<td>0.015</td>
<td>0.38</td>
<td>0.004</td>
<td>0.1</td>
<td>0.060</td>
<td>1.50</td>
<td>0.630</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>-</td>
<td>0.015</td>
<td>0.38</td>
<td>0.004</td>
<td>0.1</td>
<td>0.060</td>
<td>1.50</td>
<td>0.717</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>-</td>
<td>0.015</td>
<td>0.38</td>
<td>0.004</td>
<td>0.1</td>
<td>0.060</td>
<td>1.50</td>
<td>0.770</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>-</td>
<td>0.015</td>
<td>0.38</td>
<td>0.004</td>
<td>0.1</td>
<td>0.060</td>
<td>1.50</td>
<td>0.876</td>
</tr>
</tbody>
</table>