35kV XLPE Medium Voltage

APPLICATIONS
- Predominantly used for primary underground distribution
- Suitable for use in wet or dry locations, direct burial, underground duct, and where exposed to sunlight
- To be used at 35,000 volts or less and at conductor temperatures not to exceed 90°C for normal operation

CONSTRUCTION DETAILS
- The phase conductor is concentrically stranded, compressed soft copper or 1350-H16/26 aluminum alloy
- Cable is composed of the conductor with moisture block in the strands, covered by a semi-conducting cross-linked polyethylene strand shield, a tree-retardant cross-linked polyethylene primary insulation, and a semi-conducting cross-linked polyethylene insulation shield
- Conductors are available with either 100% or 133% insulation levels
- Concentric neutral of bare copper wires and an insulating polyethylene jacket is applied over the insulation shield
- Cable identified by surface print on the jacket and with the lightning bolt symbol for supply cables indented in the jacket

SPECIFICATIONS
Southwire 35kV HI-DRI Primary UD Cable meets or exceeds the following ASTM specifications:
- B 230: Aluminum 1350-H19 Wire for Electrical Purposes
- B 231: Aluminum 1350 Conductors, Concentric-Lay-Stranded
- B 609: Aluminum 1350 Round Wire, Annealed and Intermediate Tempers, for Electrical Purposes

Southwire 35kV HI-DRI Primary UD Cable is manufactured to the latest edition of the following specifications, and in case of specification conflicts, in the order listed:
- ANSI/ICEA S-94-649
- AEIC CS-8
- RUS U-1
Phase Conductor

<table>
<thead>
<tr>
<th>Size (AWG or kcmil)</th>
<th>Strand- ing</th>
<th>Capacity</th>
<th>No. of Wires</th>
<th>Size (AWG)</th>
<th>Approx. Insul.</th>
<th>Insul. Shield Min. Point</th>
<th>Approx. Bare Phase Cond.</th>
<th>Over Insul.</th>
<th>Over Insul. Shield</th>
<th>Comp. Cable</th>
<th>Comp. Cable</th>
<th>Direct Burial</th>
<th>In Ducts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/0</td>
<td>19</td>
<td>Full</td>
<td>16</td>
<td>14</td>
<td>345</td>
<td>40</td>
<td>50</td>
<td>362</td>
<td>1095</td>
<td>1195</td>
<td>1423</td>
<td>898</td>
<td>209*</td>
</tr>
<tr>
<td>1/0</td>
<td>19</td>
<td>2/3</td>
<td>11</td>
<td>14</td>
<td>345</td>
<td>40</td>
<td>50</td>
<td>362</td>
<td>1095</td>
<td>1195</td>
<td>1423</td>
<td>838</td>
<td></td>
</tr>
<tr>
<td>2/0</td>
<td>19</td>
<td>Full</td>
<td>20</td>
<td>14</td>
<td>345</td>
<td>40</td>
<td>50</td>
<td>406</td>
<td>1140</td>
<td>1240</td>
<td>1468</td>
<td>1004</td>
<td>237*</td>
</tr>
<tr>
<td>3/0</td>
<td>19</td>
<td>Full</td>
<td>25</td>
<td>14</td>
<td>345</td>
<td>40</td>
<td>50</td>
<td>456</td>
<td>1190</td>
<td>1290</td>
<td>1518</td>
<td>1132</td>
<td>270*</td>
</tr>
<tr>
<td>4/0</td>
<td>19</td>
<td>Full</td>
<td>20</td>
<td>12</td>
<td>345</td>
<td>40</td>
<td>50</td>
<td>512</td>
<td>1245</td>
<td>1345</td>
<td>1607</td>
<td>1329</td>
<td>308**</td>
</tr>
<tr>
<td>4/0</td>
<td>19</td>
<td>1/2</td>
<td>10</td>
<td>12</td>
<td>345</td>
<td>40</td>
<td>50</td>
<td>512</td>
<td>1245</td>
<td>1345</td>
<td>1607</td>
<td>1139</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>37</td>
<td>1/3</td>
<td>18</td>
<td>14</td>
<td>345</td>
<td>40</td>
<td>80</td>
<td>661</td>
<td>1405</td>
<td>1505</td>
<td>1787</td>
<td>1446</td>
<td>384**</td>
</tr>
<tr>
<td>500</td>
<td>37</td>
<td>1/3</td>
<td>16</td>
<td>12</td>
<td>345</td>
<td>40</td>
<td>80</td>
<td>790</td>
<td>1533</td>
<td>1633</td>
<td>1948</td>
<td>1818</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>61</td>
<td>1/6</td>
<td>12</td>
<td>12</td>
<td>345</td>
<td>55</td>
<td>80</td>
<td>968</td>
<td>1720</td>
<td>1850</td>
<td>2166</td>
<td>2183</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>61</td>
<td>1/6</td>
<td>16</td>
<td>12</td>
<td>345</td>
<td>55</td>
<td>80</td>
<td>1117</td>
<td>1868</td>
<td>1998</td>
<td>2313</td>
<td>2620</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>91</td>
<td>1/6</td>
<td>20</td>
<td>12</td>
<td>345</td>
<td>55</td>
<td>80</td>
<td>1250</td>
<td>2013</td>
<td>2143</td>
<td>2458</td>
<td>3069</td>
<td></td>
</tr>
</tbody>
</table>

* Ampacities shown assume use of 100% load factor, 60 Hz current, 36" burial depth, 20°C ambient temperature, 90°C conductor temperature, earth RHo 90, insulation and shield RHo 400.

* Full neutral construction (Ampacities assume - single phase circuit, one cable)

** 1/3 neutral cable (Ampacities assume - three phase circuit, 3 cables triplexed, multi-point grounding per ICEA methods)

OPTIONS

- Stranded copper available
- XLPE jacket available upon request
- PVC jacket available upon request
- UL listed
- Cables manufactured to ICEA S-97-682
 - LCT Shield, Bare Copper Tape Shield
- Copper conductors manufactured to ASTM standards
 - B 3: Soft Annealed Copper Wire
 - B 8: Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard or Soft
- Other voltages available
- Cable can be triplexed or paralleled upon request