NOTE: These are minimum average dimensions as per CSA Standards.

* Other conductor sizes and outer jacket colours are available upon request. (#s in brackets represent # of strands / conductor)

**Longer maximum lengths may be possible. Standard sizes and lengths may be supplied. Reel sizes are not guaranteed. The factory reserves the right to make changes as necessary to optimize manufacturing requirements.

HVTECK SPECIFICATIONS

HVTECK CU 3/C 345TRXLPE TS PVC AIA PVC 28KV 133% CSA

PRODUCT HIGHLIGHTS
Southwire’s 28KV HVTECK is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4, -40°C, Hazardous Locations (HL) and 105°C for use in harsh Canadian environments. For installation in cable trays, duct banks, direct burial, troughs, continuous rigid cable supports and concrete encaseable.

CONSTRUCTION

Conductor
- Class B compressed stranded copper
 - in accordance with ASTM B3 and ASTM B8

Options
- Class B compact stranded -8000 Series Aluminum -ACM
- Class B compact stranded copper

Conductor Shield
- Extruded semi-conducting thermosetting polymeric layer

Insulation
- TR-XLPE - (Tree Retardent Cross Linked Polyethylene)
- Thickness: 0.345 inches (8.76mm) - nominal
- Insulation level: 133%
- 105°C rated

Insulation Shield
- Extruded Semi-conducting thermosetting polymeric layer
- CSA 68.10 - Shield Removal/termination requirements are printed on the surface

Copper Tape Shield
- Helically wrapped 5 mil copper tape with 25% overlap

Bonding Conductor
- Class B compressed stranded bare copper
 - in accordance with ASTM B3 and B8

Fillers
- Non-wicking, non-hygroscopic

Inner Jacket
- Black PVC
- Thickness:
 - No.1 AWG = 0.11 inches (2.79mm)
 - No.1/0 AWG to 350 kcmil = 0.14 inches (3.56mm)

Armour
- Aluminum Interlocked Armour (AIA)
- Optional Galvanized Steel Interlocked Armour (GSIA)

Overall Jacket
- Black PVC (optional colours available)
- Nominal Thickness:
 - No.1 AWG to 350 kcmil = 0.095 inches (2.41mm)

Typical Print Legend
- (CSA) SOUTHWIRE (NESC) #P# 3/C [#AWG or #kcmil] CU 345 TRXLPE AIA 28KV 133% INS LEVEL 25% TS SUN RES 105° FT4 HL (-40°C) LTGG RoHS YEAR [SEQUENTIAL METER MARKS]

TABLE 1 - WEIGHTS & MEASUREMENTS

<table>
<thead>
<tr>
<th>HVTECK Product Code</th>
<th>AWG or Kcmil</th>
<th>Conductor Diameter</th>
<th>Diameter Over Insulation</th>
<th>Diameter Over Insulation Shield</th>
<th>Bonding Cond. Size</th>
<th>Diameter Over Inner Jacket</th>
<th>Diameter Over Armour</th>
<th>Approx. Overall Diameter</th>
<th>Minimum Bend Radius</th>
<th>Approx. Weight of Cable</th>
<th>Max. Real Weight (cable and reel) **</th>
<th>Max. Real Diameter / Width **</th>
<th>Max. Real Length of Cable on Reel **</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU345X10-001</td>
<td>1(19)</td>
<td>0.322</td>
<td>8.2</td>
<td>1.042</td>
<td>26.5</td>
<td>1.122</td>
<td>28.5</td>
<td>0.017</td>
<td>26.5</td>
<td>2.687</td>
<td>68.2</td>
<td>76.6</td>
<td>80.9</td>
</tr>
<tr>
<td>CU345X10-010</td>
<td>1/0(19)</td>
<td>0.362</td>
<td>9.2</td>
<td>1.082</td>
<td>27.5</td>
<td>1.162</td>
<td>29.5</td>
<td>0.017</td>
<td>27.5</td>
<td>2.833</td>
<td>72.0</td>
<td>80.3</td>
<td>84.7</td>
</tr>
<tr>
<td>CU345X10-020</td>
<td>2/0(19)</td>
<td>0.405</td>
<td>10.3</td>
<td>1.125</td>
<td>28.6</td>
<td>1.205</td>
<td>30.6</td>
<td>0.017</td>
<td>28.6</td>
<td>2.926</td>
<td>74.3</td>
<td>82.7</td>
<td>87.0</td>
</tr>
<tr>
<td>CU345X10-030</td>
<td>3/0(19)</td>
<td>0.456</td>
<td>11.6</td>
<td>1.176</td>
<td>29.9</td>
<td>1.256</td>
<td>31.9</td>
<td>0.017</td>
<td>29.9</td>
<td>3.036</td>
<td>77.1</td>
<td>85.5</td>
<td>89.8</td>
</tr>
<tr>
<td>CU345X10-040</td>
<td>4/0(19)</td>
<td>0.512</td>
<td>13.0</td>
<td>1.232</td>
<td>31.3</td>
<td>1.312</td>
<td>33.3</td>
<td>0.017</td>
<td>31.3</td>
<td>3.157</td>
<td>80.2</td>
<td>88.6</td>
<td>92.9</td>
</tr>
<tr>
<td>CU345X10-250</td>
<td>250(37)</td>
<td>0.558</td>
<td>14.2</td>
<td>1.288</td>
<td>32.7</td>
<td>1.368</td>
<td>34.7</td>
<td>0.017</td>
<td>32.7</td>
<td>3.279</td>
<td>83.3</td>
<td>91.6</td>
<td>96.0</td>
</tr>
<tr>
<td>CU345X10-350</td>
<td>350(37)</td>
<td>0.661</td>
<td>16.8</td>
<td>1.391</td>
<td>35.3</td>
<td>1.471</td>
<td>37.4</td>
<td>0.017</td>
<td>35.3</td>
<td>3.501</td>
<td>88.9</td>
<td>97.3</td>
<td>101.6</td>
</tr>
</tbody>
</table>
Table 2 - Engineering Specifications

<table>
<thead>
<tr>
<th>HVTECK Product Code</th>
<th>Maximum Pulling Tension</th>
<th>DC Resistance @ 25°C</th>
<th>AC Resistance @ 90°C (triplex formation)</th>
<th>Inductance L</th>
<th>Capacitance C</th>
<th>Inductive Reactance @ 60Hz (triplexed) Xl</th>
<th>Capacitive Reactance @ 60Hz (triplexed) Xc</th>
<th>Positive - Sequence Impedance*</th>
<th>Zero - Sequence Impedance*</th>
<th>Short Circuit Current (each phase conductor) @ 60Hz</th>
<th>Allowable Ampacities in Ventilated Cable Tray †</th>
<th>Allowable Ampacities Directly Buried in Earth ‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU345X10-001</td>
<td>2009 lb 89.35 mN</td>
<td>0.129</td>
<td>0.423</td>
<td>0.161</td>
<td>0.529</td>
<td>0.1292</td>
<td>0.4238</td>
<td>0.0332</td>
<td>0.1089</td>
<td>0.0467</td>
<td>0.1958</td>
<td>0.0799</td>
</tr>
<tr>
<td>CU345X10-010</td>
<td>2534 lb 112.74 mN</td>
<td>0.102</td>
<td>0.335</td>
<td>0.128</td>
<td>0.419</td>
<td>0.1243</td>
<td>0.4079</td>
<td>0.0356</td>
<td>0.1168</td>
<td>0.0469</td>
<td>0.1538</td>
<td>0.0746</td>
</tr>
<tr>
<td>CU345X10-020</td>
<td>3194 lb 142.93 mN</td>
<td>0.081</td>
<td>0.266</td>
<td>0.101</td>
<td>0.333</td>
<td>0.1199</td>
<td>0.3933</td>
<td>0.0382</td>
<td>0.1252</td>
<td>0.0452</td>
<td>0.1463</td>
<td>0.0896</td>
</tr>
<tr>
<td>CU345X10-030</td>
<td>4027 lb 178.14 mN</td>
<td>0.064</td>
<td>0.211</td>
<td>0.080</td>
<td>0.264</td>
<td>0.1153</td>
<td>0.3794</td>
<td>0.0411</td>
<td>0.1356</td>
<td>0.0435</td>
<td>0.1427</td>
<td>0.0819</td>
</tr>
<tr>
<td>CU345X10-040</td>
<td>5078 lb 225.90 mN</td>
<td>0.051</td>
<td>0.167</td>
<td>0.064</td>
<td>0.210</td>
<td>0.1111</td>
<td>0.3645</td>
<td>0.0444</td>
<td>0.1456</td>
<td>0.0419</td>
<td>0.1374</td>
<td>0.0598</td>
</tr>
<tr>
<td>CU345X10-050</td>
<td>6000 lb 266.89 mN</td>
<td>0.043</td>
<td>0.141</td>
<td>0.054</td>
<td>0.178</td>
<td>0.1086</td>
<td>0.3562</td>
<td>0.0466</td>
<td>0.1529</td>
<td>0.0409</td>
<td>0.1343</td>
<td>0.0569</td>
</tr>
<tr>
<td>CU345X10-060</td>
<td>8400 lb 373.95 mN</td>
<td>0.031</td>
<td>0.101</td>
<td>0.039</td>
<td>0.128</td>
<td>0.1029</td>
<td>0.3377</td>
<td>0.0524</td>
<td>0.1719</td>
<td>0.0388</td>
<td>0.1273</td>
<td>0.0506</td>
</tr>
</tbody>
</table>

* Calculations are based on 5 mil 25% over lapping copper tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter

† Ampacities are based on Table D17N of the 2015 Canadian Electrical Code Part I (40°C Ambient Air Temperature, indoor installation)

‡ Ampacities are based on Table D17E of the 2015 Canadian Electrical Code Part I

© 2016 Southwire Company, LLC. All Rights Reserved.