HVTECK SPECIFICATIONS

HVTECK CU 1/C 90EPR TS LSZH AIA LSZH SOLONON® 5KV 100% CSA

PRODUCT HIGHLIGHTS
Southwire’s 5KV HVTECK Solonon® low smoke zero halogen jacketed cable is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4-ST1, -25°C, Hazardous Locations (HL) and 105°C for use in harsh Canadian environments. For installation in cable trays, duct banks, direct burial, troughs, continuous rigid cable supports and concrete encaseable.

CONSTRUCTION

- **Conductor**
 - Class B compressed stranded copper
 - in accordance with ASTM B3 and ASTM B8

- **Options**
 - Class B compact stranded copper
 - Strand blocking technology
 - Timing on copper conductors

- **Conductor Shield**
 - Extruded semi-conducting thermosetting polymeric layer

- **Insulation**
 - No-lead EPR (Ethylene Propylene Rubber)
 - Thickness: 0.09 inches (2.29mm) - nominal
 - Insulation level: 100% - grounded system
 - 105°C rated

- **Insulation Shield**
 - Extruded Semi-conducting thermosetting polymeric layer
 - CSA B8.10 - Shield Removal/termination requirements are printed on the surface
 - Meets requirement of ICEA but built to CSA standards

- **Copper Tape Shield**
 - Helically wrapped 5 mil copper tape with 25% overlap
 - Not designed to carry ground fault current
 - A separate bonding/grounding conductor may be required

- **Inner Jacket**
 - Black PVC
 - Thickness:
 - No.2 AWG to No.1/0 AWG = 0.06 inches (1.52mm)
 - No.2/0 AWG to 1000 kcmil = 0.08 inches (2.03mm)

- **Armour**
 - Aluminum Interlocked Armour (AIA)
 - Optional Galvanized Steel Interlocked Armour (GSIA)

- **Overall Jacket**
 - Black - Low Smoke Zero Halogen XLPE Solonon jacket
 - Nominal Thickness:
 - No.2 AWG to 250 kcmil = 0.05 inches (1.3mm)
 - 500 kcmil to 1000 kcmil = 0.06 inches (1.52mm)

- **Typical Print Legend**
 - (CSA SOUTHWIRE [INESC] #4 #4AWG or #4kcmil) CU 90 EPR AIA 5KV 100% INS LEVEL 25% TS SUN RES T5 5FT4 ST1 LSZH SOLONON HL (-25°C LTDD RoHS YEAR [SEQUENTIAL METER MARKS])

TABLE 1 - WEIGHTS & MEASUREMENTS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CU90140-002</td>
<td>2/7</td>
<td>0.283</td>
<td>0.493</td>
<td>0.573</td>
<td>0.713</td>
<td>1.033</td>
<td>1.133</td>
<td>28.8</td>
<td>13.6</td>
<td>345</td>
<td>691</td>
<td>1029</td>
<td>4899</td>
<td>2222</td>
<td>78/54</td>
</tr>
<tr>
<td>CU90140-001</td>
<td>1/9(1)</td>
<td>0.327</td>
<td>0.532</td>
<td>0.612</td>
<td>0.752</td>
<td>1.072</td>
<td>1.172</td>
<td>29.8</td>
<td>14.1</td>
<td>357</td>
<td>773</td>
<td>1150</td>
<td>5388</td>
<td>2444</td>
<td>78/54</td>
</tr>
<tr>
<td>CU90140-010</td>
<td>1/0(1/8)</td>
<td>0.362</td>
<td>0.572</td>
<td>0.652</td>
<td>0.792</td>
<td>1.112</td>
<td>1.212</td>
<td>30.8</td>
<td>14.5</td>
<td>368</td>
<td>869</td>
<td>1293</td>
<td>5964</td>
<td>2706</td>
<td>78/54</td>
</tr>
<tr>
<td>CU90140-020</td>
<td>2/0(1/9)</td>
<td>0.405</td>
<td>0.615</td>
<td>0.695</td>
<td>0.875</td>
<td>1.195</td>
<td>1.295</td>
<td>32.9</td>
<td>15.5</td>
<td>395</td>
<td>1031</td>
<td>1535</td>
<td>6938</td>
<td>3147</td>
<td>78/54</td>
</tr>
<tr>
<td>CU90140-030</td>
<td>3/0(3/10)</td>
<td>0.456</td>
<td>0.666</td>
<td>0.746</td>
<td>0.926</td>
<td>1.246</td>
<td>1.346</td>
<td>34.2</td>
<td>16.2</td>
<td>410</td>
<td>1177</td>
<td>1752</td>
<td>8223</td>
<td>3730</td>
<td>96/54</td>
</tr>
<tr>
<td>CU90140-040</td>
<td>4/0(4/19)</td>
<td>0.512</td>
<td>0.722</td>
<td>0.802</td>
<td>0.982</td>
<td>1.302</td>
<td>1.402</td>
<td>35.6</td>
<td>16.8</td>
<td>427</td>
<td>1355</td>
<td>2016</td>
<td>9298</td>
<td>4213</td>
<td>96/54</td>
</tr>
<tr>
<td>CU90140-250</td>
<td>250(37)</td>
<td>0.598</td>
<td>0.778</td>
<td>0.858</td>
<td>1.038</td>
<td>1.538</td>
<td>1.458</td>
<td>37.0</td>
<td>17.5</td>
<td>444</td>
<td>1497</td>
<td>2238</td>
<td>10142</td>
<td>4601</td>
<td>96/54</td>
</tr>
<tr>
<td>CU90140-250</td>
<td>250(37)</td>
<td>0.681</td>
<td>0.881</td>
<td>0.961</td>
<td>1.141</td>
<td>1.681</td>
<td>1.561</td>
<td>39.6</td>
<td>18.7</td>
<td>476</td>
<td>1949</td>
<td>2900</td>
<td>12852</td>
<td>5628</td>
<td>96/54</td>
</tr>
<tr>
<td>CU90140-500</td>
<td>500(48)</td>
<td>0.792</td>
<td>1.198</td>
<td>1.278</td>
<td>1.458</td>
<td>1.778</td>
<td>1.838</td>
<td>45.2</td>
<td>22.8</td>
<td>579</td>
<td>3483</td>
<td>5184</td>
<td>16533</td>
<td>7498</td>
<td>108/70.5</td>
</tr>
<tr>
<td>CU90140-750</td>
<td>750(61)</td>
<td>0.968</td>
<td>1.198</td>
<td>1.278</td>
<td>1.458</td>
<td>1.778</td>
<td>1.838</td>
<td>45.2</td>
<td>22.8</td>
<td>579</td>
<td>3483</td>
<td>5184</td>
<td>16533</td>
<td>7498</td>
<td>108/70.5</td>
</tr>
<tr>
<td>CU90140-1000</td>
<td>1000(81)</td>
<td>1.117</td>
<td>1.347</td>
<td>1.352</td>
<td>1.538</td>
<td>1.807</td>
<td>1.937</td>
<td>49.2</td>
<td>23.7</td>
<td>627</td>
<td>4542</td>
<td>6825</td>
<td>16468</td>
<td>7470</td>
<td>108/70.5</td>
</tr>
</tbody>
</table>

NOTE: These are minimum average dimensions as per CSA Standards.

* Other conductor sizes and outer jacket colours are available upon request. (#s in brackets represent # of strands / conductor)

TABLE 1 - WEIGHTS & MEASUREMENTS

- **Max. Reel Weight**
 - (reel and cable)

- **Max. External Diameter / Width**

- **Max. External Length of Cable on Reel**

TABLE 1 - WEIGHTS & MEASUREMENTS

- **Max. Reel Weight**
 - (reel and cable)

- **Max. External Diameter / Width**

- **Max. External Length of Cable on Reel**

© 2016 Southwire Company, LLC. All Rights Reserved.
HVTECK SPECIFICATIONS

HVTECK CU 1/C 90EPR TS LSZH AIA LSZH SOLONON® 5KV 100% CSA

DESIGN

Qualification Standards
- CSA C68.10 - Shielded Power Cables for Commercial and Industrial Applications - 5 to 46 kV
- CSA C68.3 - Shielded & Concentric Neutral Power Cable - 5 to 46 kV
- CSA C22.2 No. 174 - Cables in Hazardous Locations
- IEEA S-93-639 (NEMA WC 74) 5 to 46 kV - Shielded Power Cable
- AEIC CS-8 - Qualification Testing Requirements

Flame Test Ratings
- FT1 - Flame Test - (1,706 BTU/Hr. - Vertical Wire Flame Test)
- FT4 - Flame Test - (70,000 BTU/Hr. - Vertical Tray Flame Test)
- IEEE 1202 - Flame Test - (70,000 BTU/Hr. - Vertical Tray Test)
- IEEE 383 - Flame Test - (70,000 BTU/Hr.)
- ICEA T-29-520 - Vertical Cable Tray Flame Test - (210,000 BTU/Hr)
- IEEE 383 - Flame Test - (70,000 BTU/Hr.)
- CSA ST1 Smoke Test - marked FT4-ST1

Operating Temperatures
- -25°C - CSA Cold Bend and Impact Temperature
- -10°C - Min. Installation Temperature
- 105°C - Max. Continuous Operating Temperature
- 140°C for Emergency Overload Temperature
- 250°C for Short Circuit Temperature

Product Ratings
- CSA C22.2 No. 2568 & No. 0.3 - Wire and Cable Test Methods
- CSA LTD - (25°C) - as per C68.10 - for Cold Bend and Impact rating
- CSA HL - for Hazardous Locations rating
- CSA FT4 - for Flame Retardancy rating
- CSA SUN RES - for Sunlight Resistant rating

Table 2 - Engineering Specifications

<table>
<thead>
<tr>
<th>HVTECK Product Code</th>
<th>Maximum Pulling Tension</th>
<th>DC Resistance @ 25°C Rv</th>
<th>AC Resistance @ 90°C 60 Hz (triplex formation) Rv</th>
<th>Inductance L</th>
<th>Capacitance C</th>
<th>Inductive Reactance @ 60Hz (tripled) X</th>
<th>Capacitive Reactance @ 60Hz (tripled) X</th>
<th>Positive - Sequence Impedance</th>
<th>Zero - Sequence Impedance</th>
<th>Short Circuit Current (each phase conductor) @ GHZ</th>
<th>Allowable Ampacities in Ventilated Cable Tray 1</th>
<th>Allowable Ampacities Directly Buries in Earth 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU90140-002</td>
<td>531</td>
<td>0.162</td>
<td>0.532</td>
<td>0.203</td>
<td>0.665</td>
<td>0.0914</td>
<td>0.2999</td>
<td>0.0885</td>
<td>0.2905</td>
<td>0.0345 + 0.1131</td>
<td>0.023 + 0.054</td>
<td>0.552 + 0.524</td>
</tr>
<tr>
<td>CU90140-001</td>
<td>670</td>
<td>0.129</td>
<td>0.423</td>
<td>0.161</td>
<td>0.529</td>
<td>0.0882</td>
<td>0.2893</td>
<td>0.0979</td>
<td>0.3212</td>
<td>0.0332 + 0.1091</td>
<td>0.0271 + 0.083</td>
<td>0.162 + 0.051</td>
</tr>
<tr>
<td>CU90140-010</td>
<td>845</td>
<td>0.102</td>
<td>0.335</td>
<td>0.128</td>
<td>0.419</td>
<td>0.0855</td>
<td>0.2804</td>
<td>0.1074</td>
<td>0.3525</td>
<td>0.0322 + 0.1057</td>
<td>0.0247 + 0.075</td>
<td>0.128 + 0.049</td>
</tr>
<tr>
<td>CU90140-020</td>
<td>1065</td>
<td>0.081</td>
<td>0.266</td>
<td>0.101</td>
<td>0.333</td>
<td>0.0830</td>
<td>0.2724</td>
<td>0.1176</td>
<td>0.3800</td>
<td>0.0313 + 0.1027</td>
<td>0.0225 + 0.086</td>
<td>0.102 + 0.048</td>
</tr>
<tr>
<td>CU90140-030</td>
<td>1342</td>
<td>0.064</td>
<td>0.211</td>
<td>0.080</td>
<td>0.264</td>
<td>0.0807</td>
<td>0.2647</td>
<td>0.1297</td>
<td>0.4257</td>
<td>0.0304 + 0.0996</td>
<td>0.0204 + 0.063</td>
<td>0.081 + 0.047</td>
</tr>
<tr>
<td>CU90140-040</td>
<td>1693</td>
<td>0.051</td>
<td>0.167</td>
<td>0.084</td>
<td>0.210</td>
<td>0.0785</td>
<td>0.2576</td>
<td>0.1430</td>
<td>0.4692</td>
<td>0.0296 + 0.0971</td>
<td>0.0186 + 0.057</td>
<td>0.065 + 0.045</td>
</tr>
<tr>
<td>CU90140-250</td>
<td>2000</td>
<td>0.043</td>
<td>0.141</td>
<td>0.054</td>
<td>0.178</td>
<td>0.0778</td>
<td>0.2564</td>
<td>0.1479</td>
<td>0.4852</td>
<td>0.0293 + 0.0983</td>
<td>0.0179 + 0.055</td>
<td>0.056 + 0.044</td>
</tr>
<tr>
<td>CU90140-400</td>
<td>4000</td>
<td>0.022</td>
<td>0.071</td>
<td>0.028</td>
<td>0.081</td>
<td>0.0726</td>
<td>0.2381</td>
<td>0.1988</td>
<td>0.6556</td>
<td>0.0274 + 0.0896</td>
<td>0.0133 + 0.040</td>
<td>0.029 + 0.039</td>
</tr>
<tr>
<td>CU90140-750</td>
<td>7000</td>
<td>0.014</td>
<td>0.047</td>
<td>0.019</td>
<td>0.063</td>
<td>0.0706</td>
<td>0.2315</td>
<td>0.2305</td>
<td>0.7564</td>
<td>0.0266 + 0.0873</td>
<td>0.0115 + 0.0325</td>
<td>0.020 + 0.037</td>
</tr>
<tr>
<td>CU90140-1000</td>
<td>8000</td>
<td>0.011</td>
<td>0.035</td>
<td>0.015</td>
<td>0.050</td>
<td>0.0690</td>
<td>0.2263</td>
<td>0.2625</td>
<td>0.8812</td>
<td>0.0260 + 0.0853</td>
<td>0.016 + 0.036</td>
<td>0.336 + 0.223</td>
</tr>
</tbody>
</table>

* Calculations are based on three cables triplexed / 5 mil 25 % over lapping copper tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter

† Ampacities are based on Table D17M of the 2015 Canadian Electrical Code Part I (40°C Ambient Air Temperature, indoor installation)

‡ Ampacities are based on Table D17A of the 2015 Canadian Electrical Code Part I

© 2016 Southwire Company, LLC. All Rights Reserved.

End View