Construction

Polymeric insulator is injection molded from grey track resistant high-density polyethylene. The insulator is designed to be installed using hand-wrapped tie wire or PREFORMED™ ties.

Features

- Dielectrically compatible with Southwire polyethylene covered conductors or other polyethylene covered conductors
- Insulator is molded from a track resistant polyethylene compound
- UV resistant
- Lightweight and shatter resistant

Application

The polymer insulator is used in 35 kV overhead distribution lines with bare or covered conductors. The insulator was developed to meet the electrical, mechanical and environmental parameters typical of overhead distribution lines. Use bare tie wire for bare wire applications. Use covered tie wire for covered conductor applications.

Specification

ANSI C29.1
ANSI C29.5

<table>
<thead>
<tr>
<th>Southwire Stock #</th>
<th>Description</th>
<th>Hendrix Cat #</th>
<th>Nominal ANSI Class</th>
<th>Neck Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>64946301</td>
<td>35kV Polymer Pin Insulator, Tie Type F-neck, 1" Pin</td>
<td>HPI-35</td>
<td>55-6</td>
<td>F</td>
</tr>
<tr>
<td>64946401</td>
<td>35kV Polymer Pin Insulator, Tie Type F-neck, 1 3/8" Pin</td>
<td>HPI-35-02</td>
<td>55-6</td>
<td>F</td>
</tr>
</tbody>
</table>

© 2008 Southwire Company. All rights reserved. www.southwire.com
<table>
<thead>
<tr>
<th>Southwire Stock #</th>
<th>64946301</th>
<th>64946401</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>35kV Polymer Pin Insulator, Tie Type F-neck, 1” Pin</td>
<td>35kV Polymer Pin Insulator, Tie Type F-neck, 1 3/8” Pin</td>
</tr>
<tr>
<td>Hendrix Cat. No.</td>
<td>HPI-35</td>
<td>HPI-35-02</td>
</tr>
<tr>
<td>Nominal ANSI Class</td>
<td>55-6</td>
<td>55-7</td>
</tr>
<tr>
<td>Leakage Distance [in]</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Dry Arcing Distance [in]</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Pin Hole Diameter [in]</td>
<td>1</td>
<td>1 3/8</td>
</tr>
<tr>
<td>Minimum Pin Length [in]</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>60 Hz Dry Flashover, kV</td>
<td>126*</td>
<td>126</td>
</tr>
<tr>
<td>60 Hz Wet Flashover, kV</td>
<td>82*</td>
<td>82</td>
</tr>
<tr>
<td>Positive Impulse Flashover, kV</td>
<td>175*</td>
<td>175</td>
</tr>
<tr>
<td>Negative Impulse Flashover, kV</td>
<td>238*</td>
<td>238</td>
</tr>
<tr>
<td>Low Frequency Puncture, kV</td>
<td>223*</td>
<td>235</td>
</tr>
<tr>
<td>RIV @ 1 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 kV to grd, μV</td>
<td>< 5*</td>
<td>< 5</td>
</tr>
<tr>
<td>15 kV to grd, μV</td>
<td>< 5*</td>
<td>< 5</td>
</tr>
<tr>
<td>22 kV to grd, μV</td>
<td>< 5*</td>
<td>< 5</td>
</tr>
<tr>
<td>Cantilever Strength [lbs.]</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Dimensions [in]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td>B</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>C</td>
<td>4.625</td>
<td>4.625</td>
</tr>
<tr>
<td>D</td>
<td>2.875</td>
<td>2.875</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>G</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Weight [lbs.]</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Neck Style</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Max. continuous conductor</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Operating Temp. deg. C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Extrapolated from similar design