CONSTRUCTION

Conductor
- Class B - compact stranded - 8000 Series Aluminum - ACM

Options
- Class B compact stranded copper
- Class B compressed stranded copper
- Strand blocking technology
- Tinning on copper conductors

Conductor Shield
- Extruded semi-conducting thermosetting polymeric layer

Insulation
- No-lead EPR (Ethylene Propylene Rubber)
- Thickness: 0.26 inches (6.60mm) - nominal
- Insulation level: 100% - grounded system
- 105°C rated

Insulation Shield
- Extruded Semi-conducting thermosetting polymeric layer
- CSA 68.10 - Shield Removal/termination requirements are printed on the surface
- Phase identification as per ICEA Method 3, using printed circuit numbers
- Meets requirement of ICEA but built to CSA standards

Copper Tape Shield
- Helically wrapped 5 mil copper tape with 25% overlap

Bonding Conductor
- Class B compressed stranded bare copper
 - in accordance with ASTM B3 and B8

Fillers
- Non-wicking, non-hygroscopic

Overall Jacket
- Black - Low Smoke Zero Halogen XLPE Solonon jacket
- Nominal Thickness:
 - No.1 AWG to No.4/0 AWG = 0.11 inches (2.79mm)
 - 250 kcmil to 500 kcmil = 0.14 inches (3.56mm)

Typical Print Legend
- (CSA) SOUTHWIRE [NESC] #P# 3/C [#AWG or #kcmil] CPT AL 260 EPR 25KV 100% INS LEVEL 25% TS SUN RES TC-ER 105°C FT4-ST1 LSZH SOLONON (-25°C) LTDD RoHS YEAR [SEQUENTIAL METER MARKS]
TABLE 2 - ENGINEERING SPECIFICATIONS

<table>
<thead>
<tr>
<th>HVTC Product Code</th>
<th>Maximum Pulling Tension</th>
<th>DC Resistance @ 25°C Ω_{dc}</th>
<th>AC Resistance @ 50°C-60Hz (triplex formation) Ω_{ac}</th>
<th>Inductance L</th>
<th>Capacitance C</th>
<th>Inductive Reactance @ 60Hz (triplexed) X_L</th>
<th>Capacitive Reactance @ 60Hz (triplexed) X_C</th>
<th>Positive - Sequence Impedance*</th>
<th>Zero - Sequence Impedance*</th>
<th>Short Circuit Current (each phase conductor) @ 60Hz</th>
<th>Allowable Ampacities in Ventilated Cable Tray</th>
<th>Allowable Ampacities Directly Buried in Earth ‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL260R46-001</td>
<td>1506</td>
<td>6701</td>
<td>0.211</td>
<td>0.892</td>
<td>0.265</td>
<td>0.870</td>
<td>0.1212</td>
<td>0.3977</td>
<td>0.0471</td>
<td>0.1499</td>
<td>0.0563</td>
<td>0.0172</td>
</tr>
<tr>
<td>AL260R46-010</td>
<td>1901</td>
<td>8455</td>
<td>0.168</td>
<td>0.551</td>
<td>0.211</td>
<td>0.693</td>
<td>0.1167</td>
<td>0.3628</td>
<td>0.0507</td>
<td>0.163</td>
<td>0.0523</td>
<td>0.0160</td>
</tr>
<tr>
<td>AL260R46-020</td>
<td>2396</td>
<td>10657</td>
<td>0.133</td>
<td>0.436</td>
<td>0.167</td>
<td>0.549</td>
<td>0.1125</td>
<td>0.3692</td>
<td>0.0546</td>
<td>0.179</td>
<td>0.0486</td>
<td>0.0148</td>
</tr>
<tr>
<td>AL260R46-030</td>
<td>3020</td>
<td>13435</td>
<td>0.105</td>
<td>0.345</td>
<td>0.132</td>
<td>0.433</td>
<td>0.1084</td>
<td>0.3565</td>
<td>0.0590</td>
<td>0.193</td>
<td>0.0408</td>
<td>0.0137</td>
</tr>
<tr>
<td>AL260R46-040</td>
<td>3809</td>
<td>16942</td>
<td>0.084</td>
<td>0.274</td>
<td>0.105</td>
<td>0.345</td>
<td>0.1045</td>
<td>0.3427</td>
<td>0.0839</td>
<td>0.2097</td>
<td>0.0394</td>
<td>0.0127</td>
</tr>
<tr>
<td>AL260R46-250</td>
<td>4500</td>
<td>20017</td>
<td>0.071</td>
<td>0.232</td>
<td>0.092</td>
<td>0.292</td>
<td>0.1021</td>
<td>0.3351</td>
<td>0.0672</td>
<td>0.2206</td>
<td>0.0385</td>
<td>0.0120</td>
</tr>
<tr>
<td>AL260R46-350</td>
<td>6300</td>
<td>28024</td>
<td>0.051</td>
<td>0.166</td>
<td>0.084</td>
<td>0.209</td>
<td>0.0970</td>
<td>0.3182</td>
<td>0.0760</td>
<td>0.2494</td>
<td>0.0366</td>
<td>0.0106</td>
</tr>
<tr>
<td>AL260R46-500</td>
<td>9000</td>
<td>40034</td>
<td>0.035</td>
<td>0.116</td>
<td>0.045</td>
<td>0.147</td>
<td>0.0821</td>
<td>0.3021</td>
<td>0.0869</td>
<td>0.2850</td>
<td>0.0347</td>
<td>0.1139</td>
</tr>
</tbody>
</table>

* Calculations are based on 5 mil 25% over-lapping copper tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohm-meter

1 Ampacities are based on Table D17N of the 2015 Canadian Electrical Code Part I (40°C Ambient Air Temperature, indoor installation)

2 Ampacities are based on Table D17E of the 2015 Canadian Electrical Code Part I

*** For use in cable trays, exposed run and hazardous locations as per the limitations in the Canadian Electrical Code Part I, particularly Table 19.