PRODUCT HIGHLIGHTS
Southwire’s 25KV HVTC Solonon® low smoke zero halogen jacketed cable is a CSA approved copper tape shielded cable for Industrial and Commercial medium voltage applications. FT4-ST1, -25°C, and 105°C rated for use in harsh Canadian environments. Rated for installation in cable trays, duct banks, direct burial, troughs, continuous rigid cable supports and concrete encaseable. For use in cable trays, exposed run and hazardous locations as per the limitations in the Canadian Electrical Code Part I, particularly Table 19.

CONSTRUCTION

Conductor
- Class B - compact stranded -8000 Series Aluminum -ACM

Options
- Class B compact stranded copper
- Class B compressed stranded copper
- Strand blocking technology
- Tinning on copper conductors

Conductor Shield
- Extruded semi-conducting thermosetting polymeric layer

Insulation
- No-lead EPR (Ethylene Propylene Rubber)
- Thickness: 0.32 inches (8.13mm) - nominal
- Insulation level: 133%
- 105°C rated

Insulation Shield
- Extruded Semi-conducting thermosetting polymeric layer

Copper Tape Shield
- Helically wrapped 5 mil copper tape with 25% overlap

Bonding Conductor
- Class B compressed stranded bare copper - in accordance with ASTM B3 and B8

Fillers
- Non-wicking, non-hygroscopic

Overall Jacket
- Black - Low Smoke Zero Halogen XLPE Solonon jacket
- Nominal Thickness:
 - No.1 AWG to No.2/0 AWG = 0.11 inches (2.79mm)
 - No.3/0 AWG to 500 kcmil = 0.14 inches (3.56mm)
- Typical Print Legend
 - (CSA) SOUTHWIRE (NESC) #P# 3/C [#AWG or #kcmil] CPT AL 320 EPR 25KV 133% INS LEVEL 25% TS SUN RES TC-ER 105° FT4-ST1 LSZH SOLONON (-25°C) LTDD RoHS YEAR [SEQUENTIAL METER MARKS]
TABLE 2 - ENGINEERING SPECIFICATIONS

<table>
<thead>
<tr>
<th>HVTC Product Code</th>
<th>Maximum Pulling Tension</th>
<th>DC Resistance @ 25°C ρ_c</th>
<th>AC Resistance @ 50°C DC (triplex formation) ρ_c</th>
<th>Inductance L</th>
<th>Capacitance C</th>
<th>Inductive Reactance @ 60Hz (triplexed) X_L</th>
<th>Capacitive Reactance @ 60Hz (triplexed) X_C</th>
<th>Positive - Sequence Impedance*</th>
<th>Zero - Sequence Impedance*</th>
<th>Short Circuit Current (each phase conductor) @ 60Hz</th>
<th>Allowable Ampacities in Ventilated Cable Tray †</th>
<th>Allowable Ampacities Directly Buried in Earth ‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL320Q94-001</td>
<td>1506</td>
<td>6'701</td>
<td>0.211</td>
<td>0.892</td>
<td>0.265</td>
<td>0.670</td>
<td>0.1239</td>
<td>0.4241</td>
<td>0.0418</td>
<td>0.1371</td>
<td>0.266 + j0.051</td>
<td>0.627 + j0.339</td>
</tr>
<tr>
<td>AL320Q94-010</td>
<td>1901</td>
<td>8'455</td>
<td>0.168</td>
<td>0.551</td>
<td>0.211</td>
<td>0.693</td>
<td>0.1244</td>
<td>0.4083</td>
<td>0.0448</td>
<td>0.1470</td>
<td>0.263 + j0.051</td>
<td>0.656 + j0.340</td>
</tr>
<tr>
<td>AL320Q94-20</td>
<td>2396</td>
<td>10'857</td>
<td>0.133</td>
<td>0.436</td>
<td>0.167</td>
<td>0.549</td>
<td>0.1209</td>
<td>0.3936</td>
<td>0.0486</td>
<td>0.1576</td>
<td>0.212 + j0.049</td>
<td>0.570 + j0.326</td>
</tr>
<tr>
<td>AL320Q94-020</td>
<td>3020</td>
<td>13'435</td>
<td>0.105</td>
<td>0.345</td>
<td>0.132</td>
<td>0.433</td>
<td>0.1154</td>
<td>0.3788</td>
<td>0.0518</td>
<td>0.1699</td>
<td>0.252 + j0.047</td>
<td>0.522 + j0.312</td>
</tr>
<tr>
<td>AL320Q94-030</td>
<td>3809</td>
<td>16'942</td>
<td>0.084</td>
<td>0.274</td>
<td>0.105</td>
<td>0.345</td>
<td>0.1112</td>
<td>0.3649</td>
<td>0.0553</td>
<td>0.1833</td>
<td>0.483 + j0.296</td>
<td>9.4</td>
</tr>
<tr>
<td>AL320Q94-040</td>
<td>4500</td>
<td>20'117</td>
<td>0.071</td>
<td>0.232</td>
<td>0.089</td>
<td>0.292</td>
<td>0.1086</td>
<td>0.3522</td>
<td>0.0598</td>
<td>0.1828</td>
<td>0.410 + j0.243</td>
<td>11.1</td>
</tr>
<tr>
<td>AL320Q94-250</td>
<td>5500</td>
<td>28'024</td>
<td>0.051</td>
<td>0.166</td>
<td>0.084</td>
<td>0.209</td>
<td>0.1029</td>
<td>0.3377</td>
<td>0.0661</td>
<td>0.2188</td>
<td>0.684 + j0.040</td>
<td>15.5</td>
</tr>
<tr>
<td>AL320Q94-350</td>
<td>6300</td>
<td>38'024</td>
<td>0.035</td>
<td>0.116</td>
<td>0.045</td>
<td>0.147</td>
<td>0.0875</td>
<td>0.3198</td>
<td>0.0751</td>
<td>0.2464</td>
<td>0.0563 + j0.038</td>
<td>22.2</td>
</tr>
</tbody>
</table>

* Calculations are based on 5 mil 25% over lapping copper tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter

† Ampacities are based on Table D17N of the 2015 Canadian Electrical Code Part I (40°C Ambient Air Temperature, indoor installation)

‡ Ampacities are based on Table D17E of the 2015 Canadian Electrical Code Part I

*** For use in cable trays, exposed run and hazardous locations as per the limitations in the Canadian Electrical Code Part I, particularly Table 19.