HVTECK SPECIFICATIONS

HVTECK AL 3/C 345EPR TS PVC AIA PVC 28KV 133% CSA

PRODUCT HIGHLIGHTS
Southwire’s 28KV HVTECK is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4, -40°C, Hazardous Locations (HL) and 105°C for use in harsh Canadian environments. For installation in cable trays, duct banks, direct burial, troughs, continuous rigid cable supports and concrete encaseable.

CONSTRUCTION

- **Conductor**
 - Class B - compact stranded -8000 Series Aluminum -ACM
 - Class B compact stranded copper
 - Class B compressed stranded copper
 - Strand blocking technology
 - Tinning on copper conductors

- **Conductor Shield**
 - Extruded semi-conducting thermosetting polymeric layer

- **Insulation**
 - No-lead EPR (Ethylene Propylene Rubber)
 - Thickness: 0.345 inches (8.76mm) - nominal
 - Insulation level: 133%
 - 105°C rated

- **Insulation Shield**
 - Extruded Semi-conducting thermosetting polymeric layer
 - CSA 68.10 - Shield Removal/termination requirements are printed on the surface
 - Phase identification as per ICEA Method 3, using printed circuit numbers
 - Meets requirement of ICEA but built to CSA standards

- **Copper Tape Shield**
 - Helically wrapped 5 mil copper tape with 25% overlap

- **Bonding Conductor**
 - Class B compressed stranded bare copper
 - In accordance with ASTM B3 and B8

- **Fillers**
 - Non-wicking, non-hygroscopic

- **Inner Jacket**
 - Black PVC
 - Thickness: No.1 AWG to No.1/0 AWG = 0.11 inches (2.79mm)
 - No.2/0 AWG to 350 kcmil = 0.14 inches (9.56mm)

- **Armour**
 - Aluminum Interlocked Armour (AIA)
 - Optional Galvanized Steel Interlocked Armour (GSIA)

- **Overall Jacket**
 - Black PVC (optional colours available)
 - Nominal Thickness:
 - No.1 AWG = 0.076 inches (1.91mm)
 - No.1/0 AWG to 350 kcmil = 0.085 inches (2.16mm)

Typical Print Legend
- (CSA) SOUTHwire [NESC] #P# 3/C [AWG or kcmil] CPT. AL 345 EPR AIA 28KV 133% INS LEVEL 25% TS SUN RES 105° FT4 HL (-40°C) LTGG RoHS YEAR [SEQUENTIAL METER MARKS]

TABLE 1 - WEIGHTS & MEASUREMENTS

<table>
<thead>
<tr>
<th>HVTECK Product Code</th>
<th>AWG or kcmil</th>
<th>Conductor Diameter</th>
<th>Insulation Diameter</th>
<th>Bonding Cond. Diameter</th>
<th>Inner Jacket Diameter</th>
<th>Armour Diameter</th>
<th>Approx. Overall Diameter</th>
<th>Minimum Bend Radius</th>
<th>Approx. Weight of Cable</th>
<th>Max. Real Diameter of Cable</th>
<th>Max. Real Weight of Cable</th>
<th>Max. Real Weight of Cable (reel and cable)</th>
<th>Max. Reel Diameter / Width</th>
<th>Max. Reel Weight</th>
<th>Max. Length of Cable on Reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL345P99-001</td>
<td>1/0 (19)</td>
<td>0.299</td>
<td>7.6</td>
<td>1.019</td>
<td>25.9</td>
<td>1.099</td>
<td>27.9</td>
<td>6</td>
<td>2.637</td>
<td>6.0</td>
<td>7.96</td>
<td>79.2</td>
<td>21.8</td>
<td>554</td>
<td>3.85</td>
</tr>
<tr>
<td>AL345P99-010</td>
<td>1/0 (19)</td>
<td>0.336</td>
<td>8.5</td>
<td>1.066</td>
<td>26.8</td>
<td>1.136</td>
<td>28.9</td>
<td>6</td>
<td>2.717</td>
<td>7.1</td>
<td>8.04</td>
<td>81.7</td>
<td>22.5</td>
<td>573</td>
<td>3.85</td>
</tr>
<tr>
<td>AL345P99-020</td>
<td>2/0 (19)</td>
<td>0.373</td>
<td>9.6</td>
<td>1.086</td>
<td>27.8</td>
<td>1.176</td>
<td>29.9</td>
<td>6</td>
<td>2.883</td>
<td>7.7</td>
<td>8.19</td>
<td>83.7</td>
<td>24.3</td>
<td>598</td>
<td>3.85</td>
</tr>
<tr>
<td>AL345P99-030</td>
<td>3/0 (19)</td>
<td>0.423</td>
<td>10.7</td>
<td>1.142</td>
<td>29.0</td>
<td>1.223</td>
<td>31.1</td>
<td>6</td>
<td>2.965</td>
<td>7.9</td>
<td>8.35</td>
<td>85.7</td>
<td>25.9</td>
<td>616</td>
<td>3.85</td>
</tr>
<tr>
<td>AL345P99-040</td>
<td>4/0 (19)</td>
<td>0.475</td>
<td>12.1</td>
<td>1.195</td>
<td>30.4</td>
<td>1.275</td>
<td>32.4</td>
<td>6</td>
<td>3.077</td>
<td>8.2</td>
<td>8.51</td>
<td>87.7</td>
<td>27.5</td>
<td>636</td>
<td>3.85</td>
</tr>
<tr>
<td>AL345P99-250</td>
<td>250 (37)</td>
<td>0.520</td>
<td>13.2</td>
<td>1.250</td>
<td>31.8</td>
<td>1.330</td>
<td>33.8</td>
<td>4</td>
<td>3.196</td>
<td>8.1</td>
<td>8.67</td>
<td>90.9</td>
<td>29.5</td>
<td>657</td>
<td>3.85</td>
</tr>
<tr>
<td>AL345P99-350</td>
<td>350 (37)</td>
<td>0.616</td>
<td>15.6</td>
<td>1.346</td>
<td>34.2</td>
<td>1.426</td>
<td>36.2</td>
<td>4</td>
<td>3.403</td>
<td>8.7</td>
<td>8.95</td>
<td>94.8</td>
<td>31.3</td>
<td>684</td>
<td>3.85</td>
</tr>
</tbody>
</table>

NOTE: These are minimum average dimensions as per CSA Standards.

* Other conductor sizes and outer jacket colours are available upon request. (#s in brackets represent # of strands / conductor)

Longer maximum lengths may be possible. Standard sizes and lengths may be supplied. Reel sizes are not guaranteed. The factory reserves the right to make changes as necessary to optimize manufacturing requirements.
TABLE 2 - ENGINEERING SPECIFICATIONS

HVTECK AL 3/C 345EPR TS PVC AIA PVC 28KV 133% CSA

DESIGN

Qualification Standards
- CSA C68.10 - Shielded Power Cables for Commercial and Industrial Applications - 5 to 46 kV
- CSA C68.3 - Shielded & Concentric Neutral Power Cable - 5 to 46 kV
- CSA C22.2 No. 174 - Cables in Hazardous Locations
- ICEA S-93-639 (NEMA WC 74) 5 to 46 kV - Shielded Power Cable
- AEIC CS-8 - Qualification Testing Requirements

Flame Test Ratings
- FT1 - Flame Test - (1,706 BTU/Hr. nominal - Vertical Wire Flame Test)
- FT4 - Flame Test - (70,000 BTU/Hr. Vertical Tray Flame Test)
- IEEE 1202 - Flame Test - (70,000 BTU/Hr. Vertical Tray Test)
- IEEE 383 - Flame Test - (70,000 BTU/Hr.)
- ICEA T-29-520 - Vertical Cable Tray Flame Test - (210,000 BTU/Hr.)

Product Ratings

- CSA C22.2 No. 2568 & No. 0.3 - Wire and Cable Test Methods
- CSA LTGS (40°C) - as per C86.10 for Cold Bend and Impact rating
- CSA HL - for Hazardous Locations rating
- CSA FT4 - for Flame Retardancy rating
- CSA SUN RES - for Sunlight Resistant rating

Operating Temperatures

- -40°C - CSA Cold Bend and Impact Temperature
- -25°C - Min. Installation Temperature
- 105°C - Max. Continuous Operating Temperature
- 140°C for Emergency Overload Temperature
- 250°C for Short Circuit Temperature

Product Codes

<table>
<thead>
<tr>
<th>HVT3K Product Code</th>
<th>Maximum Pulling Tension</th>
<th>DC Resistance @ 25°C ($\Omega / 1000$ ft)</th>
<th>AC Resistance @ 60Hz (triplex formation) (Ω / km)</th>
<th>Inductance L (μH / 1000 ft)</th>
<th>Capacitance C (μF / 1000 ft)</th>
<th>Inductive Reactance @ 60Hz (triplexed) (X_L / km)</th>
<th>Capacitive Reactance @ 60Hz (triplexed) (X_C / km)</th>
<th>Positive - Sequence Impedance*</th>
<th>Zero - Sequence Impedance*</th>
<th>Short Circuit Current (each phase conductor) @ 60Hz</th>
<th>Allowable Ampacities in Ventilated Cable Tray †</th>
<th>Allowable Ampacities Directly Buried in Earth ‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL345P99-001</td>
<td>1506</td>
<td>0.211</td>
<td>0.265</td>
<td>0.1323</td>
<td>0.0401</td>
<td>0.0499</td>
<td>0.1637</td>
<td>0.0866</td>
<td>0.0202</td>
<td>0.266 + j0.052</td>
<td>0.622 + j0.325</td>
<td>158</td>
</tr>
<tr>
<td>AL345P99-010</td>
<td>2019</td>
<td>0.168</td>
<td>0.211</td>
<td>0.1274</td>
<td>0.0409</td>
<td>0.0480</td>
<td>0.1576</td>
<td>0.0818</td>
<td>0.0188</td>
<td>0.212 + j0.050</td>
<td>0.565 + j0.312</td>
<td>181</td>
</tr>
<tr>
<td>AL345P99-020</td>
<td>2396</td>
<td>0.133</td>
<td>0.187</td>
<td>0.1226</td>
<td>0.0459</td>
<td>0.0463</td>
<td>0.1519</td>
<td>0.0577</td>
<td>0.0176</td>
<td>0.168 + j0.048</td>
<td>0.517 + j0.300</td>
<td>208</td>
</tr>
<tr>
<td>AL345P99-030</td>
<td>3020</td>
<td>0.105</td>
<td>0.132</td>
<td>0.1182</td>
<td>0.0494</td>
<td>0.0446</td>
<td>0.1462</td>
<td>0.0537</td>
<td>0.0164</td>
<td>0.133 + j0.046</td>
<td>0.476 + j0.266</td>
<td>239</td>
</tr>
<tr>
<td>AL345P99-040</td>
<td>3809</td>
<td>0.084</td>
<td>0.105</td>
<td>0.1138</td>
<td>0.0533</td>
<td>0.0429</td>
<td>0.1408</td>
<td>0.0498</td>
<td>0.0152</td>
<td>0.106 + j0.045</td>
<td>0.446 + j0.271</td>
<td>273</td>
</tr>
<tr>
<td>AL345P99-050</td>
<td>4520</td>
<td>0.071</td>
<td>0.089</td>
<td>0.1110</td>
<td>0.0419</td>
<td>0.0419</td>
<td>0.1374</td>
<td>0.0473</td>
<td>0.0144</td>
<td>0.080 + j0.044</td>
<td>0.424 + j0.258</td>
<td>302</td>
</tr>
<tr>
<td>AL345P99-060</td>
<td>6300</td>
<td>0.051</td>
<td>0.084</td>
<td>0.1052</td>
<td>0.0397</td>
<td>0.0629</td>
<td>0.1302</td>
<td>0.0422</td>
<td>0.0129</td>
<td>0.084 + j0.041</td>
<td>0.389 + j0.236</td>
<td>368</td>
</tr>
</tbody>
</table>

* Calculations are based on 5 mil 25% over lapping copper tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter

† Ampacities are based on Table D17N of the 2015 Canadian Electrical Code Part I (40°C Ambient Air Temperature, indoor installation)

‡ Ampacities are based on Table D17E of the 2015 Canadian Electrical Code Part I

© 2016 Southwire Company, LLC. All Rights Reserved.