HVTECK SPECIFICATIONS
HVTECK CU 3/C 280EPR TS LSZH AIA LSZH SOLONON® 28KV 100% CSA

PRODUCT HIGHLIGHTS
Southwire’s 28KV HVTECK Solonon® low smoke zero halogen jacketed cable is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4-ST1, -25°C, Hazardous Locations (HL) and 105°C for use in harsh Canadian environments. For installation in cable trays, duct banks, direct burial, troughs, continuous rigid cable supports and concrete encaseable.

CONSTRUCTION
Conductor
• Class B compressed stranded copper
 - in accordance with ASTM B3 and ASTM B9
Options
• Class B compact stranded -8000 Series Aluminum -ACM
• Class B compact stranded copper
• Strand blocking technology
• Tinning on copper conductors
Conductor Shield
• Extruded semi-conducting thermosetting polymeric layer
Insulation
• No-lead EPR (Ethylene Propylene Rubber)
 - Thickness: 0.28 inches (7.11mm) - nominal
 - Insulation level: 100% - grounded system
 - 105°C rated
Insulation Shield
• Extruded Semi-conducting thermosetting polymeric layer
• CSA B8.10 - Shield Removal/termination requirements are printed on the surface
• Phase identification as per ICEA Method 3, using printed circuit numbers
• Meets requirement of ICEA but built to CSA standards
Copper Tape Shield
• Helically wrapped 5mil copper tape with 25% overlap
Bonding Conductor
• Class B compressed stranded bare copper
 - in accordance with ASTM B3 and B9
Fillers
• Non-wicking, non-hygroscopic
Inner Jacket
• Black PVC
• Thickness:
 No.1 AWG to No.3/0 AWG = 0.11 inches (2.79mm)
 No.4/0 AWG to 500 kcmil = 0.14 inches (3.56mm)
Armour
• Aluminum Interlocked Armour (AIA)
• Optional Galvanized Steel Interlocked Armour (GSIA)
Overall Jacket
• Black - Low Smoke Zero Halogen XLPE Solonon jacket
 • Nominal Thickness:
 No.1 AWG to No.2/0 AWG = 0.075 inches (1.91mm)
 No.3/0 AWG to 500 kcmil = 0.085 inches (2.16mm)
Typical Print Legend
• (CSA) SOUTHIRE [NESC] #P# 3/C [#AWG or #kcmil] CU 280 EPR AIA 28KV 100% INS LEVEL 25% TS SUN RES 105° FT4-ST1 LSZH SOLONON HL (-25°C) LTD RoHS YEAR (SEQUENTIAL METER MARKS)

NOTE: These are minimum average dimensions as per CSA Standards.
* Other conductor sizes and outer jacket colours are available upon request. (#s in brackets represent # of strands / conductor)
** Longer maximum lengths may be possible. Standard sizes and lengths may be supplied. Reel sizes are not guaranteed. The factory reserves the right to make changes as necessary to optimize manufacturing requirements.

TABLE 1 - WEIGHTS & MEASUREMENTS

<table>
<thead>
<tr>
<th>HVTECK Product Code</th>
<th>AWG or Kcmil</th>
<th>Diameter</th>
<th>Diameter</th>
<th>Diameter</th>
<th>Bonding</th>
<th>Diameter</th>
<th>Diameter</th>
<th>Approx. Overall</th>
<th>Approx. Overall</th>
<th>Approx. Weight</th>
<th>Max. Real Weight</th>
<th>Max. Real Diameter</th>
<th>Max. Real Width</th>
<th>Max. Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Diameter</td>
<td>Over</td>
<td>Over</td>
<td>Cond.</td>
<td>Over</td>
<td>Armour</td>
<td>Radius</td>
<td>of Cable</td>
<td>(reel and cable)</td>
<td>** Diameter **</td>
<td>** Diameter **</td>
<td>** of Reel **</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>inches</td>
<td>inches</td>
<td>Insulation</td>
<td>Shield</td>
<td>inches</td>
<td>inches</td>
<td>inches</td>
<td>inches</td>
<td>Ib / 100ft</td>
<td>lbs</td>
<td>kg</td>
<td>m</td>
<td>feet</td>
</tr>
<tr>
<td>C028P01-001</td>
<td>1/19</td>
<td>0.322</td>
<td>0.912</td>
<td>23.2</td>
<td>2.992</td>
<td>25.2</td>
<td>2.406</td>
<td>61.1</td>
<td>6.95</td>
<td>2.886</td>
<td>73.3</td>
<td>20.2</td>
<td>513</td>
<td>3814</td>
</tr>
<tr>
<td>C028P01-010</td>
<td>1/0/19</td>
<td>0.362</td>
<td>0.952</td>
<td>24.2</td>
<td>1.032</td>
<td>26.2</td>
<td>2.492</td>
<td>63.3</td>
<td>7.17</td>
<td>2.972</td>
<td>75.5</td>
<td>20.8</td>
<td>528</td>
<td>4147</td>
</tr>
<tr>
<td>C028P01-020</td>
<td>2/0/19</td>
<td>0.405</td>
<td>1.035</td>
<td>25.3</td>
<td>1.075</td>
<td>27.3</td>
<td>2.585</td>
<td>65.7</td>
<td>7.40</td>
<td>3.065</td>
<td>77.9</td>
<td>21.5</td>
<td>545</td>
<td>4542</td>
</tr>
<tr>
<td>C028P01-030</td>
<td>3/0/19</td>
<td>0.456</td>
<td>1.126</td>
<td>26.6</td>
<td>1.126</td>
<td>28.6</td>
<td>2.695</td>
<td>68.5</td>
<td>7.88</td>
<td>3.195</td>
<td>81.2</td>
<td>22.4</td>
<td>568</td>
<td>5142</td>
</tr>
<tr>
<td>C028P01-040</td>
<td>4/0/19</td>
<td>0.512</td>
<td>1.280</td>
<td>28.0</td>
<td>1.182</td>
<td>30.0</td>
<td>2.876</td>
<td>73.1</td>
<td>8.14</td>
<td>3.376</td>
<td>85.8</td>
<td>23.6</td>
<td>600</td>
<td>5034</td>
</tr>
<tr>
<td>C028P01-250</td>
<td>250/37</td>
<td>0.558</td>
<td>1.588</td>
<td>29.4</td>
<td>1.238</td>
<td>31.4</td>
<td>3.072</td>
<td>80.1</td>
<td>9.08</td>
<td>4.077</td>
<td>99.4</td>
<td>25.8</td>
<td>661</td>
<td>7812</td>
</tr>
<tr>
<td>C028P01-350</td>
<td>350/37</td>
<td>0.661</td>
<td>1.688</td>
<td>32.0</td>
<td>1.341</td>
<td>34.1</td>
<td>3.220</td>
<td>81.8</td>
<td>9.50</td>
<td>4.372</td>
<td>94.5</td>
<td>28.0</td>
<td>661</td>
<td>7812</td>
</tr>
<tr>
<td>C028P01-500</td>
<td>500/37</td>
<td>0.789</td>
<td>2.000</td>
<td>35.3</td>
<td>1.469</td>
<td>37.3</td>
<td>3.496</td>
<td>88.8</td>
<td>9.72</td>
<td>4.996</td>
<td>101.5</td>
<td>28.0</td>
<td>711</td>
<td>9643</td>
</tr>
</tbody>
</table>

Note: These are minimum average dimensions as per CSA Standards.
* Other conductor sizes and outer jacket colours are available upon request. (#s in brackets represent # of strands / conductor)
** Longer maximum lengths may be possible. Standard sizes and lengths may be supplied. Reel sizes are not guaranteed. The factory reserves the right to make changes as necessary to optimize manufacturing requirements.

© 2016 Southwire Company, LLC. All Rights Reserved.
TABLE 2 - ENGINEERING SPECIFICATIONS

<table>
<thead>
<tr>
<th>HVTECK Product Code</th>
<th>Maximum Pulling Tension</th>
<th>DC Resistance @ 25°C</th>
<th>AC Resistance @ 50°C (triplex formation)</th>
<th>Inductance L</th>
<th>Capacitance C</th>
<th>Inductive Reactance @ 60Hz (triplexed)</th>
<th>Capacitive Reactance @ 60Hz (triplexed)</th>
<th>Positive - Sequence Impedance*</th>
<th>Zero - Sequence Impedance*</th>
<th>Short Circuit Current (each phase conductor) @ 60Hz</th>
<th>Allowable Ampacities in Ventilated Cable Tray</th>
<th>Allowable Ampacities Directly Buries in Earth ‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU280P01-001</td>
<td>2009</td>
<td>0.129</td>
<td>0.423</td>
<td>0.161</td>
<td>0.529</td>
<td>0.1210</td>
<td>0.0397</td>
<td>0.1497</td>
<td>0.0546</td>
<td>0.162 + j0.048</td>
<td>5.7</td>
<td>202</td>
</tr>
<tr>
<td>CU280P01-010</td>
<td>2534</td>
<td>0.102</td>
<td>0.335</td>
<td>0.128</td>
<td>0.419</td>
<td>0.1165</td>
<td>0.0383</td>
<td>0.1441</td>
<td>0.0522</td>
<td>0.128 + j0.046</td>
<td>7.2</td>
<td>231</td>
</tr>
<tr>
<td>CU280P01-020</td>
<td>3194</td>
<td>0.081</td>
<td>0.266</td>
<td>0.101</td>
<td>0.333</td>
<td>0.1124</td>
<td>0.0387</td>
<td>0.1794</td>
<td>0.0424</td>
<td>0.102 + j0.045</td>
<td>9.0</td>
<td>265</td>
</tr>
<tr>
<td>CU280P01-030</td>
<td>4207</td>
<td>0.064</td>
<td>0.211</td>
<td>0.080</td>
<td>0.264</td>
<td>0.1082</td>
<td>0.0350</td>
<td>0.1338</td>
<td>0.0408</td>
<td>0.081 + j0.043</td>
<td>11.4</td>
<td>303</td>
</tr>
<tr>
<td>CU280P01-040</td>
<td>5078</td>
<td>0.051</td>
<td>0.167</td>
<td>0.084</td>
<td>0.210</td>
<td>0.1043</td>
<td>0.0322</td>
<td>0.1209</td>
<td>0.0414</td>
<td>0.065 + j0.041</td>
<td>14.3</td>
<td>348</td>
</tr>
<tr>
<td>CU280P01-250</td>
<td>6000</td>
<td>0.043</td>
<td>0.141</td>
<td>0.075</td>
<td>0.178</td>
<td>0.1021</td>
<td>0.0334</td>
<td>0.1263</td>
<td>0.0385</td>
<td>0.065 + j0.040</td>
<td>16.9</td>
<td>384</td>
</tr>
<tr>
<td>CU280P01-350</td>
<td>8400</td>
<td>0.031</td>
<td>0.101</td>
<td>0.039</td>
<td>0.128</td>
<td>0.0969</td>
<td>0.0318</td>
<td>0.1199</td>
<td>0.0365</td>
<td>0.040 + j0.038</td>
<td>23.7</td>
<td>468</td>
</tr>
<tr>
<td>CU280P01-500</td>
<td>12000</td>
<td>0.022</td>
<td>0.071</td>
<td>0.028</td>
<td>0.091</td>
<td>0.0921</td>
<td>0.0302</td>
<td>0.1139</td>
<td>0.0347</td>
<td>0.028 + j0.036</td>
<td>33.9</td>
<td>565</td>
</tr>
</tbody>
</table>

* Calculations are based on 5 mil 25% over lapping copper tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter

1 Ampacities are based on Table D17N of the 2015 Canadian Electrical Code Part I (40°C Ambient Air Temperature, indoor installation)

2 Ampacities are based on Table D17E of the 2015 Canadian Electrical Code Part I