HVTECK AL 3/C 115EPR TS LSZH AIA LSZH SOLONON® 8KV 100% CSA

PRODUCT HIGHLIGHTS
Southwire's 8KV HVTECK Solonon® low smoke zero halogen jacketed cable is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4-ST1, -25°C, Hazardous Locations (HL) and 105°C for use in harsh Canadian environments. For installation in cable trays, duct banks, direct burial, troughs, continuous rigid cable supports and concrete encasable.

CONSTRUCTION

Conductor
- Class B - compact stranded -8000 Series Aluminum -ACM

Options
- Class B compact stranded copper
- Class B compressed stranded copper
- Strand blocking technology
- Timing on copper conductors

Conductor Shield
- Extruded semi-conducting thermosetting polymeric layer

Insulation
- No-lead EPR (Ethylene Propylene Rubber)
- Thickness: 0.115 inches (2.92mm) - nominal
- Insulation level: 100% - grounded system
- 105°C rated

Insulation Shield
- Extruded Semi-conducting thermosetting polymeric layer
- CSA 68.10 - Shield Removal/termination requirements are printed on the surface
- Phase identification as per IECA Method 3, using printed circuit numbers
- Meets requirement of IECA but built to CSA standards

Copper Tape Shield
- Helically wrapped 5 mil copper tape with 25% overlap

Bonding Conductor
- Class B compressed stranded bare copper
- In accordance with ASTM B3 and B8

Fillers
- Non-wicking, non-hygroscopic

Inner Jacket
- Black - PVC
- Thickness:
 - No. 2 AWG to No. 1 AWG = 0.08 inches (2.03mm)
 - No. 1 AWG to 500 kcmil = 0.11 inches (2.79mm)
 - 750 kcmil to 1000 kcmil = 0.14 inches (3.56mm)

Armour
- Aluminum Interlocked Armour (AIA)
- Optional Galvanized Steel Interlocked Armour (GSIA)

Overall Jacket
- Black - Low Smoke Zero Halogen XLPE Solonon jacket
- Nominal Thickness:
 - No. 2 AWG to No. 3/0 AWG = 0.06 inches (1.52mm)
 - No. 4/0 AWG to 500 kcmil = 0.075 inches (1.91mm)
 - 750 kcmil to 1000 kcmil = 0.085 inches (2.16mm)

Typical Print Legend
- [CSA] SOUTHWIRE (NESC) #P# 3/C [AWG or #kcmil] CPT AL 115 EPR AIA 8KV 100% INS LEVEL 25% TS SUN RES 105° FT4-ST1 LSZH SOLONON HL (-25°C) LTD RoHS YEAR [SEQUENTIAL METER MARKS]

NOTE: These are minimum average dimensions as per CSA Standards.
* Other conductor sizes and outer jacket colours are available upon request. (#s in brackets represent # of strands / conductor)
** Longer maximum lengths may be possible. Standard sizes and lengths may be supplied. Reel sizes are not guaranteed. The factory reserves the right to make changes as necessary to optimize manufacturing requirements.
HVTECK SPECIFICATIONS

HVTECK AL 3/C 115EPR TS LSZH AIA LSZH SOLONON® 8KV 100% CSA

DESIGN

Qualification Standards

- CSA C88.10 - Shielded Power Cables for Commercial and Industrial Applications - 5 to 46 kV
- CSA C88.3 - Shielded & Concentric Neutral Power Cable - 5 to 46 kV
- CSA C22.2 No. 174 - Cables in Hazardous Locations
- ICEA S-93-639 (NEMA WC 74) 5 to 46 kV - Shielded Power Cable
- AEC CS-8 - Qualification Testing Requirements

Flame Test Ratings

- FT1 - Flame Test - (1,706 BTU/Hr. nominal - Vertical Wire Flame Test)
- FT4, Flame Test - (70,000 BTU/Hr. - Vertical Tray Flame Test)
- IEEE 1202 - Flame Test - (70,000 BTU/Hr. - Vertical Tray Test)
- IEEE 385 - Flame Test - (70,000 BTU/Hr.)
- IEC T-29-520 - Vertical Cable Tray Flame Test - (210,000 BTU/Hr)
- CSA ST1 Smoke Test - marked FT4-ST1

Product Ratings

- CSA C22.2 No. 2568 & No. 0.3 - Wire and Cable Test Methods
- CSA LTDD (25°C) - as per C88.10 - for Cold Bend and Impact rating
- CSA HL - for Hazardous Locations rating
- CSA FT4 - for Flame Retardancy rating
- CSA SUN RES - for Sunlight Resistant rating

Operating Temperatures

- -25°C - CSA Cold Bend and Impact Temperature
- -10°C - Min. Installation Temperature
- 105°C - Max. Continuous Operating Temperature
- 140°C for Emergency Overload Temperature
- 250°C for Short Circuit Temperature

TABLE 2 - ENGINEERING SPECIFICATIONS

<table>
<thead>
<tr>
<th>HVTECK Product Code</th>
<th>Maximum Pulling Tension</th>
<th>DC Resistance @ 25°C Ω/km</th>
<th>AC Resistance @ 60°C (triplex formation) Ω/km</th>
<th>Inductance L H</th>
<th>Capacitance C µF/km</th>
<th>Inductive Reactance @ 60Hz (triplexed) X ohm/km</th>
<th>Capacitive Reactance @ 60Hz (triplexed) X ohm/km</th>
<th>Positive - Sequence Impedance X ohm/km</th>
<th>Zero - Sequence Impedance X ohm/km</th>
<th>Short Circuit Current (each phase conductor @ 60Hz) kAmps</th>
<th>Allowable Ampacities in Ventilated Cable Tray</th>
<th>Allowable Ampacities Directly Buried in Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL115L06-002</td>
<td>1194</td>
<td>0.265</td>
<td>0.869</td>
<td>0.333</td>
<td>1.093</td>
<td>0.0899</td>
<td>0.3245</td>
<td>0.0725</td>
<td>0.2378</td>
<td>0.0373</td>
<td>0.1223</td>
<td>0.0366</td>
</tr>
<tr>
<td>AL115L06-001</td>
<td>1506</td>
<td>0.211</td>
<td>0.892</td>
<td>0.265</td>
<td>0.670</td>
<td>0.0957</td>
<td>0.3140</td>
<td>0.0785</td>
<td>0.2577</td>
<td>0.0361</td>
<td>0.1184</td>
<td>0.0338</td>
</tr>
<tr>
<td>AL115L06-010</td>
<td>1901</td>
<td>0.168</td>
<td>0.551</td>
<td>0.211</td>
<td>0.693</td>
<td>0.0925</td>
<td>0.3035</td>
<td>0.0858</td>
<td>0.2813</td>
<td>0.0349</td>
<td>0.1144</td>
<td>0.0309</td>
</tr>
<tr>
<td>AL115L06-020</td>
<td>2396</td>
<td>0.133</td>
<td>0.436</td>
<td>0.167</td>
<td>0.549</td>
<td>0.0896</td>
<td>0.2940</td>
<td>0.0935</td>
<td>0.3088</td>
<td>0.0338</td>
<td>0.1108</td>
<td>0.0284</td>
</tr>
<tr>
<td>AL115L06-030</td>
<td>3020</td>
<td>0.105</td>
<td>0.345</td>
<td>0.132</td>
<td>0.433</td>
<td>0.0868</td>
<td>0.2847</td>
<td>0.1026</td>
<td>0.3386</td>
<td>0.0327</td>
<td>0.1073</td>
<td>0.0259</td>
</tr>
<tr>
<td>AL115L06-040</td>
<td>3609</td>
<td>0.084</td>
<td>0.274</td>
<td>0.105</td>
<td>0.345</td>
<td>0.0842</td>
<td>0.2762</td>
<td>0.1126</td>
<td>0.3694</td>
<td>0.0317</td>
<td>0.1041</td>
<td>0.0238</td>
</tr>
<tr>
<td>AL115L06-250</td>
<td>4500</td>
<td>0.071</td>
<td>0.232</td>
<td>0.089</td>
<td>0.292</td>
<td>0.0831</td>
<td>0.2725</td>
<td>0.1175</td>
<td>0.3896</td>
<td>0.0313</td>
<td>0.1027</td>
<td>0.0226</td>
</tr>
<tr>
<td>AL115L06-500</td>
<td>6300</td>
<td>0.051</td>
<td>0.166</td>
<td>0.084</td>
<td>0.209</td>
<td>0.0791</td>
<td>0.2616</td>
<td>0.1352</td>
<td>0.4438</td>
<td>0.0301</td>
<td>0.0986</td>
<td>0.0196</td>
</tr>
<tr>
<td>AL115L06-750</td>
<td>9000</td>
<td>0.035</td>
<td>0.116</td>
<td>0.045</td>
<td>0.148</td>
<td>0.0766</td>
<td>0.2514</td>
<td>0.1573</td>
<td>0.5160</td>
<td>0.0289</td>
<td>0.0948</td>
<td>0.0169</td>
</tr>
<tr>
<td>AL115L06-1000</td>
<td>13500</td>
<td>0.024</td>
<td>0.077</td>
<td>0.031</td>
<td>0.100</td>
<td>0.0740</td>
<td>0.2426</td>
<td>0.1828</td>
<td>0.5999</td>
<td>0.0279</td>
<td>0.0915</td>
<td>0.0145</td>
</tr>
</tbody>
</table>

* Calculations are based on 5 mil 25% over copper tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter

1 Ampacities are based on Table D17N of the 2015 Canadian Electrical Code Part I (40°C Ambient Air Temperature, indoor installation)

2 Ampacities are based on Table D17E of the 2015 Canadian Electrical Code Part I