PRODUCT HIGHLIGHTS
Southwire’s 8KV HVTECK is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4, -40°C, Hazardous Locations (HL) and 105°C for use in harsh Canadian environments. For installation in cable trays, duct banks, direct burial, troughs, continuous rigid cable supports and concrete encasement.

CONSTRUCTION
Conductor
- Class B compressed stranded copper
 - in accordance with ASTM B3 and ASTM B8
- Class B compact stranded copper
Options
- Class B compact stranded -8000 Series Aluminum -ACM
- Class B compact stranded copper
Conductor Shield
- Extruded semi-conducting thermosetting polymeric layer
Insulation
- TR-XLPE - (Tree Retardent Cross Linked Polyethylene)
 - Thickness: 0.115 inches (2.92mm) - nominal
 - Insulation level: 100% - grounded system
 - 105°C rated
Insulation Shield
- Extruded Semi-conducting thermosetting polymeric layer
- CSA 68.10 - Shield Removal/termination requirements are printed on the surface
- Phase identification as per ICEA Method 3, using printed circuit numbers
- Meets requirement of ICEA but built to CSA standards
Copper Tape Shield
- Helically wrapped 5 mil copper tape with 25% overlap
Bonding Conductor
- Class B compressed stranded bare copper
 - in accordance with ASTM B3 and B8
Fillers
- Non-wicking, non-hygroscopic
Inner Jacket
- Black PVC
 - Thickness:
 - No.2 AWG to No.1 AWG = 0.08 inches (2.03mm)
 - No.1/0 AWG to 350 kcmil = 0.11 inches (2.79mm)
 - 500 kcmil to 750 kcmil = 0.14 inches (3.56mm)
Armour
- Aluminum Interlocked Armour (AIA)
- Optional Galvanized Steel Interlocked Armour (GSIA)
Overall Jacket
- Black PVC (optional colours available)
- Nominal Thickness:
 - No.2 AWG to No.2/0 AWG = 0.06 inches (1.52mm)
 - No.3/0 AWG to 350 kcmil = 0.075 inches (1.91mm)
 - 500 kcmil to 750 kcmil = 0.085 inches (2.16mm)
Typical Print Legend
- [CSA] SOUTHWIRE [NESC] #P# 3/C [AWG or #kcmil] CU 115 TRXLPE AIA 8KV 100% INS LEVEL 25% TS SUN RES 105° FT4 HL (-40°) LTGG RoHS YEAR [SEQUENTIAL METER MARKS]

TABLE 1 - WEIGHTS & MEASUREMENTS

<table>
<thead>
<tr>
<th>HVTECK Product Code</th>
<th>AWG or kcmil</th>
<th>Conductor Diameter</th>
<th>Insulation Over Conductor</th>
<th>Insulation Over Shield</th>
<th>Bonding Cond. Size</th>
<th>Diameter Over Inner Jacket</th>
<th>Diameter Over Armour</th>
<th>Approx. Overall Diameter</th>
<th>Minimum Bend Radius</th>
<th>Approx. Weight of Cable</th>
<th>Max. Real Weight (cable only) **</th>
<th>Max. Real Diameter / Width **</th>
<th>Max. Real Length of Cable on Reel **</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU115H83-300</td>
<td></td>
</tr>
<tr>
<td>CU115H83-400</td>
<td></td>
</tr>
<tr>
<td>CU115H83-500</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: These are minimum average dimensions as per CSA Standards.
* Other conductor sizes and outer jacket colours are available upon request. (#s in brackets represent # of strands / conductor)
** Longer maximum lengths may be possible. Standard sizes and lengths may be supplied. Reel sizes are not guaranteed. The factory reserves the right to make changes as necessary to optimize manufacturing requirements.
Table 2 - Engineering Specifications

<table>
<thead>
<tr>
<th>HVTECK Product Code</th>
<th>Maximum Pulling Tension (lb)</th>
<th>DC Resistance @ 25°C (Ω/km)</th>
<th>AC Resistance @ 50°C 60 Hz (triplex formation) (Ω/km)</th>
<th>Inductance (L)</th>
<th>Capacitance (C)</th>
<th>Inductive Reactance @ 60Hz (triplexed) (X_L)</th>
<th>Capacitive Reactance @ 60Hz (triplexed) (X_C)</th>
<th>Positive-Sequence Impedance* (Ω/km)</th>
<th>Zero-Sequence Impedance* (Ω/km)</th>
<th>Short Circuit Current (each phase conductor) (kAmps)</th>
<th>Allowable Ampacities in Ventilated Cable Tray</th>
<th>Allowable Ampacities in Directly Buried in Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU115H83-002</td>
<td>1583</td>
<td>0.162</td>
<td>0.323</td>
<td>0.0973</td>
<td>0.0598</td>
<td>0.0598 + j0.1962</td>
<td>0.0367 + j0.1204</td>
<td>0.0434</td>
<td>0.0315</td>
<td>0.203 + j0.041</td>
<td>0.574 + j0.507</td>
<td>4.8</td>
</tr>
<tr>
<td>CU115H83-001</td>
<td>2009</td>
<td>0.129</td>
<td>0.423</td>
<td>0.0367</td>
<td>0.0367</td>
<td>0.0367 + j0.1204</td>
<td>0.0403 + j0.1158</td>
<td>0.0403</td>
<td>0.0315</td>
<td>0.162 + j0.039</td>
<td>0.535 + j0.485</td>
<td>6.0</td>
</tr>
<tr>
<td>CU115H83-010</td>
<td>2534</td>
<td>0.102</td>
<td>0.335</td>
<td>0.0906</td>
<td>0.0906</td>
<td>0.0906 + j0.2972</td>
<td>0.0314 + j0.1120</td>
<td>0.0388</td>
<td>0.0314</td>
<td>0.128 + j0.038</td>
<td>0.503 + j0.464</td>
<td>7.6</td>
</tr>
<tr>
<td>CU115H83-020</td>
<td>3194</td>
<td>0.081</td>
<td>0.266</td>
<td>0.0879</td>
<td>0.0879</td>
<td>0.0879 + j0.2881</td>
<td>0.0314 + j0.1086</td>
<td>0.0337</td>
<td>0.0314</td>
<td>0.128 + j0.038</td>
<td>0.503 + j0.464</td>
<td>9.6</td>
</tr>
<tr>
<td>CU115H83-030</td>
<td>4027</td>
<td>0.064</td>
<td>0.211</td>
<td>0.0851</td>
<td>0.0851</td>
<td>0.0851 + j0.2791</td>
<td>0.0321 + j0.1052</td>
<td>0.0307</td>
<td>0.0321</td>
<td>0.128 + j0.038</td>
<td>0.477 + j0.444</td>
<td>12.1</td>
</tr>
<tr>
<td>CU115H83-040</td>
<td>5078</td>
<td>0.055</td>
<td>0.167</td>
<td>0.0826</td>
<td>0.0826</td>
<td>0.0826 + j0.2710</td>
<td>0.0305 + j0.1012</td>
<td>0.0297</td>
<td>0.0305</td>
<td>0.128 + j0.038</td>
<td>0.438 + j0.393</td>
<td>15.2</td>
</tr>
<tr>
<td>CU115H83-050</td>
<td>6800</td>
<td>0.043</td>
<td>0.141</td>
<td>0.0816</td>
<td>0.0816</td>
<td>0.0816 + j0.2678</td>
<td>0.0302 + j0.1002</td>
<td>0.0289</td>
<td>0.0302</td>
<td>0.128 + j0.038</td>
<td>0.428 + j0.370</td>
<td>19.0</td>
</tr>
<tr>
<td>CU115H83-350</td>
<td>8400</td>
<td>0.034</td>
<td>0.110</td>
<td>0.0784</td>
<td>0.0784</td>
<td>0.0784 + j0.2574</td>
<td>0.0289 + j0.0970</td>
<td>0.0233</td>
<td>0.0289</td>
<td>0.128 + j0.038</td>
<td>0.404 + j0.332</td>
<td>25.2</td>
</tr>
<tr>
<td>CU115H83-750</td>
<td>12000</td>
<td>0.027</td>
<td>0.071</td>
<td>0.0755</td>
<td>0.0755</td>
<td>0.0755 + j0.2477</td>
<td>0.0285 + j0.0934</td>
<td>0.0200</td>
<td>0.0285</td>
<td>0.128 + j0.038</td>
<td>0.382 + j0.292</td>
<td>36.0</td>
</tr>
<tr>
<td>CU115H83-1150</td>
<td>18000</td>
<td>0.014</td>
<td>0.047</td>
<td>0.0731</td>
<td>0.0731</td>
<td>0.0731 + j0.2397</td>
<td>0.0275 + j0.0904</td>
<td>0.0173</td>
<td>0.0275</td>
<td>0.128 + j0.038</td>
<td>0.355 + j0.244</td>
<td>53.9</td>
</tr>
</tbody>
</table>

* Calculations are based on 5 mil 25% overlap copper tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter

1. Ampacities are based on Table D17N of the 2015 Canadian Electrical Code Part I (40°C Ambient Air Temperature, indoor installation)

2. Ampacities are based on Table D17E of the 2015 Canadian Electrical Code Part I