HVTECK SPECIFICATIONS

HVTECK AL 3/C 115TRXLPE TS PVC AIA PVC 8KV 100% CSA

PRODUCT HIGHLIGHTS
Southwire’s 8KV HVTECK is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4, -40°C, Hazardous Locations (HL) and 105°C for use in harsh Canadian environments. For installation in cable trays, duct banks, direct burial, troughs, continuous rigid cable supports and concrete encasement.

CONSTRUCTION

Conductor
- Class B - compact stranded -8000 Series Aluminum -ACM
- Class B compact stranded copper
- Class B compressed stranded copper
- Strand blocking technology
- Tinning on copper conductors

Conductor Shield
- Extruded semi-conducting thermosetting polymeric layer

Insulation
- TR-XLPE - (Tree Retardent Cross Linked Polyethylene)
- Thickness: 0.115 inches (2.92mm) - nominal
- Insulation level: 100% - grounded system
- 105°C rated

Insulation Shield
- Extruded Semi-conducting thermosetting polymeric layer
- CSA 68.10 - Shield Removal/termination requirements are printed on the surface
- Phase identification as per ICEA Method 3, using printed circuit numbers
- Meets requirement of ICEA but built to CSA standards

Copper Tape Shield
- Helically wrapped 5 mil copper tape with 25% overlap

Bonding Conductor
- Class B compressed stranded bare copper
 - in accordance with ASTM B3 and B8

Fillers
- Non-wicking, non-hygroscopic

Inner Jacket
- Black PVC
- Thickness: No.2 AWG to No.1 AWG = 0.08 inches (2.03mm)
 No.1/0 AWG to 500 kcmil = 0.11 inches (2.79mm)
 750 kcmil = 0.14 inches (3.56mm)

Armour
- Aluminum Interlocked Armour (AIA)
- Optional Galvanized Steel Interlocked Armour (GSIA)

Overall Jacket
- Black PVC (optional colours available)
- Nominal Thickness:
 No.2 AWG to No.3/0 AWG = 0.06 inches (1.52mm)
 No.4/0 AWG to 500 kcmil = 0.075 inches (1.91mm)
 750 kcmil = 0.085 inches (2.16mm)

Typical Print Legend
- [CSA] SOUTHWIRE [NESC] #P# 3/C [#AWG or #kcmil] CPT AL 115 TRXLPE AIA 8KV 100% INS LEVEL 25% TS SUN RES 105° FT4 HL (-40°C) LTGG RoHS YEAR [SEQUENTIAL METER MARKS]
HVTECK SPECIFICATIONS

HVTECK AL 3/C 115TRXLPE TS PVC AIA PVC 8KV 100% CSA

DESIGN

Qualification Standards
- CSA C68.10 - Shielded Power Cables for Commercial and Industrial Applications - 5 to 46 kV
- CSA C68.3 - Shielded & Concentric Neutral Power Cable - 5 to 46 kV
- CSA C22.2 No. 174 - Cables in Hazardous Locations
- IEEE S-93-639 (NEMA WC 74) 5 to 46 kV - Shielded Power Cable
- AEIC CS-8 - Qualification Testing Requirements

Flame Test Ratings
- FT1 - Flame Test - (7,06 BTU/Hr. nominal - Vertical Wire Flame Test)
- FT4, Flame Test - (70,000 BTU/Hr. - Vertical Tray Flame Test)
- IEEE 1202 - Flame Test - (70,000 BTU/Hr. - Vertical Tray Test)
- IEEE 383 - Flame Test - (70,000 BTU/Hr.)
- ICEA T-29-520 - Vertical Cable Tray Flame Test - (210,000 BTU/Hr.)

Product Ratings
- CSA C22.2 No. 2568 & No. 0.3 - Wire and Cable Test Methods
- CSA UL86 - for Cold Bend and Impact rating
- CSA HL - for Hazardous Locations rating
- CSA FT4 - for Flame Retardancy rating
- CSA SUN RES - for Sunlight Resistant rating

Operating Temperatures
- -40°C - CSA Cold Bend and Impact Temperature
- -25°C - Min. Installation Temperature
- 105°C - Max. Continuous Operating Temperature
- 140°C for Emergency Overload Temperature
- 250°C for Short Circuit Temperature

TABLE 2 - ENGINEERING SPECIFICATIONS

<table>
<thead>
<tr>
<th>HVTECK Product Code</th>
<th>Maximum Pulling Tension lb</th>
<th>DC Resistance @ 25°C Ω/1000 ft.</th>
<th>AC Resistance @ 90°C-60 Hz (triplex formation) Ω/km</th>
<th>Inductance L mH/1000 ft.</th>
<th>Capacitance C µF/km</th>
<th>Inductive Reactance @ 60Hz (triplexed) Ω</th>
<th>Capacitive Reactance @ 60Hz (triplexed) Ω</th>
<th>Positive-Sequence Impedance* Ω</th>
<th>Zero-Sequence Impedance* Ω</th>
<th>Short Circuit Current (each phase conductor) @ 60Hz kAmps</th>
<th>Allowable Ampacities in Ventilated Cable Tray †</th>
<th>Allowable Ampacities Directly Buried in Earth ‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL115F63-002</td>
<td>1194</td>
<td>5313</td>
<td>0.265</td>
<td>0.869</td>
<td>0.333</td>
<td>0.0989</td>
<td>0.3245</td>
<td>0.0575</td>
<td>0.1886</td>
<td>0.0373</td>
<td>0.1223</td>
<td>0.0461</td>
</tr>
<tr>
<td>AL115F63-001</td>
<td>1506</td>
<td>6701</td>
<td>0.211</td>
<td>0.692</td>
<td>0.265</td>
<td>0.0957</td>
<td>0.3140</td>
<td>0.0623</td>
<td>0.2044</td>
<td>0.0361</td>
<td>0.1184</td>
<td>0.0426</td>
</tr>
<tr>
<td>AL115F63-004</td>
<td>1901</td>
<td>8459</td>
<td>0.168</td>
<td>0.551</td>
<td>0.211</td>
<td>0.0925</td>
<td>0.3035</td>
<td>0.0680</td>
<td>0.2231</td>
<td>0.0349</td>
<td>0.1144</td>
<td>0.0390</td>
</tr>
<tr>
<td>AL115F63-020</td>
<td>2396</td>
<td>10657</td>
<td>0.133</td>
<td>0.436</td>
<td>0.167</td>
<td>0.0896</td>
<td>0.2940</td>
<td>0.0742</td>
<td>0.2433</td>
<td>0.0338</td>
<td>0.1106</td>
<td>0.0358</td>
</tr>
<tr>
<td>AL115F63-030</td>
<td>3020</td>
<td>13435</td>
<td>0.105</td>
<td>0.345</td>
<td>0.132</td>
<td>0.0868</td>
<td>0.2847</td>
<td>0.0814</td>
<td>0.2669</td>
<td>0.0327</td>
<td>0.1073</td>
<td>0.0326</td>
</tr>
<tr>
<td>AL115F63-050</td>
<td>3609</td>
<td>16942</td>
<td>0.084</td>
<td>0.274</td>
<td>0.105</td>
<td>0.0842</td>
<td>0.2762</td>
<td>0.0893</td>
<td>0.2929</td>
<td>0.0317</td>
<td>0.1041</td>
<td>0.0297</td>
</tr>
<tr>
<td>AL115F63-075</td>
<td>4500</td>
<td>20017</td>
<td>0.071</td>
<td>0.232</td>
<td>0.089</td>
<td>0.0831</td>
<td>0.2725</td>
<td>0.0932</td>
<td>0.3058</td>
<td>0.0313</td>
<td>0.1027</td>
<td>0.0295</td>
</tr>
<tr>
<td>AL115F63-250</td>
<td>6300</td>
<td>29051</td>
<td>0.051</td>
<td>0.166</td>
<td>0.084</td>
<td>0.0797</td>
<td>0.2616</td>
<td>0.1072</td>
<td>0.3519</td>
<td>0.0301</td>
<td>0.0986</td>
<td>0.0247</td>
</tr>
<tr>
<td>AL115F63-500</td>
<td>9000</td>
<td>40034</td>
<td>0.035</td>
<td>0.116</td>
<td>0.045</td>
<td>0.0766</td>
<td>0.2514</td>
<td>0.1247</td>
<td>0.4092</td>
<td>0.0289</td>
<td>0.0948</td>
<td>0.0213</td>
</tr>
<tr>
<td>AL115F63-750</td>
<td>13500</td>
<td>58051</td>
<td>0.024</td>
<td>0.077</td>
<td>0.031</td>
<td>0.0740</td>
<td>0.2426</td>
<td>0.1450</td>
<td>0.4758</td>
<td>0.0279</td>
<td>0.0915</td>
<td>0.0183</td>
</tr>
</tbody>
</table>

* Calculations are based on 5 mil 25% overlap copper tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter

† Ampacities are based on Table D17N of the 2015 Canadian Electrical Code Part I (40° C Ambient Air Temperature, indoor installation)

‡ Ampacities are based on Table D17E of the 2015 Canadian Electrical Code Part I