CONSTRUCTION

Conductor
- Class B - compact stranded - 8000 Series Aluminum - ACM
- Options
 - Class B compact stranded copper
 - Class B compressed stranded copper
 - Strand blocking technology
 - Tinning on copper conductors

Conductor Shield
- Extruded semi-conducting thermosetting polymeric layer

Insulation
- TR-XLPE - (Tree Retardent Cross Linked Polyethylene)
- Thickness: 0.42 inches (10.67mm) - nominal
- Insulation level: 133%
- 105°C rated

Insulation Shield
- Extruded Semi-conducting thermosetting polymeric layer
- CSA 68.10 - Shield Removal/termination requirements are printed on the surface
- Phase identification as per ICEA Method 3, using printed circuit numbers
- Meets requirements of ICEA but built to CSA standards

Copper Tape Shield
- Helically wrapped 5 mil copper tape with 25% overlap

Bonding Conductor
- Class B compressed stranded bare copper
- in accordance with ASTM B3 and B8

Fillers
- Non-wicking, non-hygrotscopic

Inner Jacket
- Black PVC
- Thickness:
 - No.1/0 AWG to 350 kcmil = 0.14 inches (3.56mm)

Armour
- Aluminum Interlocked Armour (AIA)
- Optional Galvanized Steel Interlocked Armour (GSIA)

Overall Jacket
- Black PVC (optional colours available)
- Nominal Thickness: No.1/0 AWG to 350 kcmil = 0.085 inches (2.16mm)

Typical Print Legend
- (CSA) SOUTHWIRE (NESC) #P# 3/C [#AWG or #kcmil] CPT AL 420 TRXLPE AIA 35KV 133% INS LEVEL 25% TS SUN RES 105° FT4 HL (-40°C) LG6 RoHS YEAR (SEQUENTIAL METER MARKS)

TABLE 1 - WEIGHTS & MEASUREMENTS

<table>
<thead>
<tr>
<th>HVTECK Product Code</th>
<th>AWG or kcmil</th>
<th>Conductor Diameter</th>
<th>Diameter Over Insulation</th>
<th>Diameter Over Insulation Shield</th>
<th>Bonding Cond. Size</th>
<th>Diameter Over Inner Jacket</th>
<th>Diameter Over Armour</th>
<th>Approx. Overall Diameter</th>
<th>Minimum Bend Radius</th>
<th>Approx. Weight of Cable</th>
<th>Max. Real Weight (reel and cable)</th>
<th>Max. Real Diameter / Width</th>
<th>Max. Length of Cable on Reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL420E69-010</td>
<td>1/0 (19)</td>
<td>0.336</td>
<td>8.5</td>
<td>1.206</td>
<td>30.6</td>
<td>1.286</td>
<td>8.5</td>
<td>1.286</td>
<td>30.6</td>
<td>25.2</td>
<td>640</td>
<td>4497</td>
<td>6692</td>
</tr>
<tr>
<td>AL420E69-020</td>
<td>2/0 (19)</td>
<td>0.376</td>
<td>9.6</td>
<td>1.246</td>
<td>31.6</td>
<td>1.326</td>
<td>9.6</td>
<td>1.326</td>
<td>31.6</td>
<td>25.8</td>
<td>656</td>
<td>4721</td>
<td>7025</td>
</tr>
<tr>
<td>AL420E69-030</td>
<td>3/0 (19)</td>
<td>0.423</td>
<td>10.7</td>
<td>1.292</td>
<td>32.8</td>
<td>1.373</td>
<td>10.7</td>
<td>1.373</td>
<td>32.8</td>
<td>26.5</td>
<td>674</td>
<td>4989</td>
<td>7425</td>
</tr>
<tr>
<td>AL420E69-040</td>
<td>4/0 (19)</td>
<td>0.475</td>
<td>12.1</td>
<td>1.345</td>
<td>34.2</td>
<td>1.425</td>
<td>12.1</td>
<td>1.425</td>
<td>34.2</td>
<td>27.3</td>
<td>694</td>
<td>5302</td>
<td>7891</td>
</tr>
<tr>
<td>AL420E69-250</td>
<td>250 (37)</td>
<td>0.560</td>
<td>13.2</td>
<td>1.400</td>
<td>35.6</td>
<td>1.480</td>
<td>13.2</td>
<td>1.480</td>
<td>35.6</td>
<td>28.1</td>
<td>715</td>
<td>5671</td>
<td>8428</td>
</tr>
<tr>
<td>AL420E69-350</td>
<td>350 (37)</td>
<td>0.616</td>
<td>15.6</td>
<td>1.496</td>
<td>38.0</td>
<td>1.576</td>
<td>15.6</td>
<td>1.576</td>
<td>38.0</td>
<td>29.6</td>
<td>752</td>
<td>6304</td>
<td>9381</td>
</tr>
</tbody>
</table>

NOTE: These are minimum average dimensions as per CSA Standards.

* Other conductor sizes and outer jacket colours are available upon request. (#s in brackets represent # of strands / conductor)

** Longer maximum lengths may be possible. Standard sizes and lengths may be supplied. Reel sizes are not guaranteed. The factory reserves the right to make changes as necessary to optimize manufacturing requirements.
Table 2 - Engineering Specifications

<table>
<thead>
<tr>
<th>HVTECK Product Code</th>
<th>Maximum Pulling Tension</th>
<th>DC Resistance @ 25°C R_{DC}</th>
<th>AC Resistance @ 90°C 60 Hz (triplex formation) R_{AC}</th>
<th>Inductance L</th>
<th>Capacitance C</th>
<th>Inductive Reactance @ 60Hz (triplexed) X_L</th>
<th>Capacitive Reactance @ 60Hz (triplexed) X_C</th>
<th>Positive - Sequence Impedance*</th>
<th>Zero - Sequence Impedance*</th>
<th>Short Circuit Current (each phase conductor) @ 60Hz</th>
<th>Allowable Ampacities in Ventilated Cable Tray †</th>
<th>Allowable Ampacities Directly Buried in Earth ‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL420E69-010</td>
<td>1901</td>
<td>0.168</td>
<td>0.561</td>
<td>0.211</td>
<td>0.693</td>
<td>0.1355</td>
<td>0.4445</td>
<td>0.0305</td>
<td>0.1001</td>
<td>0.0870</td>
<td>0.0265</td>
<td>0.551 + j0.035</td>
</tr>
<tr>
<td>AL420E69-020</td>
<td>2396</td>
<td>0.133</td>
<td>0.436</td>
<td>0.187</td>
<td>0.549</td>
<td>0.1306</td>
<td>0.4286</td>
<td>0.0325</td>
<td>0.1067</td>
<td>0.0815</td>
<td>0.0249</td>
<td>0.563 + j0.026</td>
</tr>
<tr>
<td>AL420E69-030</td>
<td>3020</td>
<td>0.105</td>
<td>0.345</td>
<td>0.122</td>
<td>0.433</td>
<td>0.1257</td>
<td>0.4124</td>
<td>0.0349</td>
<td>0.1145</td>
<td>0.0760</td>
<td>0.0232</td>
<td>0.483 + j0.254</td>
</tr>
<tr>
<td>AL420E69-040</td>
<td>3809</td>
<td>0.084</td>
<td>0.274</td>
<td>0.120</td>
<td>0.346</td>
<td>0.1210</td>
<td>0.3971</td>
<td>0.0374</td>
<td>0.1229</td>
<td>0.0708</td>
<td>0.0216</td>
<td>0.431 + j0.242</td>
</tr>
<tr>
<td>AL420E69-250</td>
<td>4500</td>
<td>0.071</td>
<td>0.232</td>
<td>0.1180</td>
<td>0.3870</td>
<td>0.0394</td>
<td>0.1291</td>
<td>0.0445</td>
<td>0.1459</td>
<td>0.0674</td>
<td>0.0205</td>
<td>0.409 + j0.231</td>
</tr>
<tr>
<td>AL420E69-350</td>
<td>6300</td>
<td>0.051</td>
<td>0.166</td>
<td>0.084</td>
<td>0.209</td>
<td>0.1117</td>
<td>0.3864</td>
<td>0.0439</td>
<td>0.1441</td>
<td>0.0804</td>
<td>0.0184</td>
<td>0.374 + j0.212</td>
</tr>
</tbody>
</table>

* Calculations are based on 5 mil 25 % overlap copper tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter

† Ampacities are based on Table D17N of the 2015 Canadian Electrical Code Part I (40°C Ambient Air Temperature, indoor installation)

‡ Ampacities are based on Table D17E of the 2015 Canadian Electrical Code Part I