35kV PowerGlide MV Primary UD Cable

APPLICATIONS
Predominantly used for primary underground distribution in conduit systems; suitable for use in wet or dry locations, direct burial, underground duct, and where exposed to sunlight. The engineered PowerGlide polyethylene jacket allows the cable to slide through duct with less friction, resulting in longer pulls or longer pushes with less lubricant, or in some cases, no lubricant at all. To be used at 35,000 volts or less and at conductor temperatures not to exceed 90°C for normal operation.

SPECIFICATIONS
Southwire 35kV PowerGlide MV Primary UD Cable meets or exceeds the following ASTM specifications:
- B3 Soft Annealed Copper Wire
- B8 Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard or Soft
- B230 Aluminum, 1350-H19 Wire for Electrical Purposes
- B231 Aluminum 1350 Conductors, Concentric-Lay-Stranded
- B609 Aluminum 1350 Round Wire, Annealed and Intermediate Tempers, for Electrical Purposes

Southwire 35kV PowerGlide MV Primary UD Cable is manufactured to the latest edition of the following specifications, and in case of specification conflicts, in the order listed:
- ANSI/ICEA S-94-649
- AEIC CS-8
- RUS U-1

CONSTRUCTION
The cable is composed of a solid or moisture blocked reverse lay, compressed stranded soft drawn copper, or a solid or moisture blocked reverse lay or unilay compressed stranded 1350-H16/26 aluminum phase conductor, covered by a semi-conducting cross-linked polyethylene strand shield, a tree-retardant cross-linked polyethylene primary insulation, and a semi-conducting cross-linked polyethylene insulation shield. Conductors are available with either 100% or 133% insulation levels. A concentric neutral of bare copper wires and a sunlight resistant, -40°C rated, insulating engineered PowerGlide polyethylene jacket are applied over the insulation shield. The cable is identified by surface print on the jacket and with the lightning bolt symbol for supply cables indented in the jacket. Red extruded stripes available upon request. A semi-conducting engineered PowerGlide polyethylene jacket is also available upon request.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUMINUM CONDUCTOR – 0.345” INSULATION - 100% INSULATION LEVEL</td>
<td></td>
</tr>
<tr>
<td>1/0 Solid 16 14</td>
<td>16 14</td>
<td>345 40 50</td>
<td>1325 1060 1160</td>
<td>1388 867 209*</td>
<td>149*</td>
<td>1/0 19 16 14</td>
<td>345 40 50</td>
<td>1352 1085 1183</td>
<td>1413 889 209*</td>
<td>149*</td>
<td>2/0 19 20 14</td>
<td>345 40 50</td>
<td>1395 1130 1230</td>
</tr>
<tr>
<td>1500 91 30 10</td>
<td>345 55 80</td>
<td>2420 2133 2263</td>
<td>2620 4240 731**</td>
<td>644**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **COPPER CONDUCTOR - 0.345” INSULATION - 100% INSULATION LEVEL** |
| 1/0 Solid 25 14 | 25 14 | 345 40 50 | 1325 1060 1160 | 1388 1198 262* | 186* | 1/0 19 25 14 | 345 40 50 | 1362 1095 1195 | 1423 1234 262* | 186* | 2/0 19 20 12 | 345 40 50 | 1405 1140 1240 | 1502 1463 300* | 215* | 3/0 19 25 12 | 345 40 50 | 1456 1190 1290 | 1552 1702 340* | 238* | 4/0 19 20 10 | 345 40 50 | 1512 1245 1345 | 1649 2052 389* | 276* | 250 37 24 10 | 345 40 80 | 1558 1300 1400 | 1758 2399 430* | 305* | 350 37 18 12 | 345 40 80 | 1661 1405 1505 | 1821 2365 485** | 406** | 500 37 26 12 | 345 40 80 | 1789 1530 1630 | 1946 3082 573** | 480** | 750 61 26 9 | 345 55 80 | 1968 1720 1850 | 2208 4382 675** | 574** | 1000 61 26 9 | 345 55 80 | 2117 1868 1998 | 2380 5558 729** | 642** | 1250 91 26 8 | 345 55 80 | 2250 2013 2143 | 2553 6778 769** | 677** |

+ Amperities shown assume use of 100% load factor, 60 Hz current, 36° burial depth, 20°C ambient temperature, 90°C conductor temperature, earth RHO 90, insulation and shield RHO 400
* Full neutral construction (Amperacies assume - single phase circuit, one cable)
** 1/3 neutral cable (Amperacies assume - three phase circuit, 3 cables triplexed, multi-point grounding per ICEA methods)